# **Appendix G**

# **Noise Report**



# **Thatcher Yard Residential**

# NOISE IMPACT ANALYSIS CITY OF LOS ANGELES

PREPARED BY:

Bill Lawson, PE, INCE blawson@urbanxroads.com (949) 336-5979

Alex Wolfe, INCE awolfe@urbanxroads.com (949) 336-5977

March 7, 2019

12185-04 Noise Study



# TABLE OF CONTENTS

| TAI | BLE O  | F CONTENTS                                       | . 111 |
|-----|--------|--------------------------------------------------|-------|
| AP  | PEND   | ICES                                             | V     |
| LIS | TOFE   | XHIBITS                                          | V     |
| LIS | T OF 1 |                                                  | V     |
| LIS | T OF A | ABBREVIATED TERMS                                | VII   |
| EXE | ECUTI  | VE SUMMARY                                       | . 1   |
|     | Off-Si | te Traffic Noise Analysis                        | . 1   |
|     | On-Si  | te Transportation Noise Analysis                 | . 1   |
|     | Opera  | ational Noise Analysis                           | . 2   |
|     | Const  | ruction Noise Analysis                           | . 3   |
|     | Const  | ruction vibration Analysis                       | . 3   |
|     | Sumn   | hary of Significance Findings                    | . 3   |
| 1   | INT    | roduction                                        | . 4   |
|     | 1.1    | Site Location                                    | . 5   |
|     | 1.2    | Project Description                              | . 5   |
| 2   | FU     | NDAMENTALS                                       | . 9   |
|     | 2.1    | Range of Noise                                   | . 9   |
|     | 2.2    | Noise Descriptors                                | 10    |
|     | 2.3    | Sound Propagation                                | 10    |
|     | 2.4    | Noise Control                                    | 11    |
|     | 2.5    | Noise Barrier Attenuation                        | 12    |
|     | 2.6    | Land Use Compatibility With Noise                | 12    |
|     | 2.7    | Community Response to Noise                      | 12    |
|     | 2.8    | Exposure to High Noise Levels                    | 13    |
|     | 2.9    | Vibration                                        | 13    |
| 3   | RE     | GULATORY SETTING                                 | 17    |
|     | 3.1    | State of California Noise Requirements           | 17    |
|     | 3.2    | State of California Building Code                | 17    |
|     | 3.3    | City of Los Angeles General Plan Noise Element   | 17    |
|     | 3.4    | City of Los Angeles Operational Noise Standards  | 18    |
|     | 3.5    | City of Los Angeles Construction Noise Standards | 18    |
|     | 3.6    | Construction Vibration Standards                 | 19    |
| 4   | SIG    | INIFICANCE CRITERIA                              | 21    |
|     | 4.1    | CEQA Guidelines Not Further Analyzed             | 21    |
|     | 4.2    | Significance Criteria                            | 22    |
| 5   | EX     | STING NOISE LEVEL MEASUREMENTS                   | 25    |
|     | 5.1    | Measurement Procedure and Criteria               | 25    |
|     | 5.2    | Noise Measurement Locations                      | 25    |
|     | 5.3    | Noise Measurement Results                        | 26    |



| 6  | ME                | THODS AND PROCEDURES                                                                                                       | 29             |
|----|-------------------|----------------------------------------------------------------------------------------------------------------------------|----------------|
|    | 6.1<br>6.2<br>6.3 | FHWA Traffic Noise Prediction Model<br>Off-Site Traffic Noise Prediction Model Inputs<br>Construction Vibration Assessment | 29<br>29<br>31 |
| 7  | OF                | F-SITE TRANSPORTATION NOISE IMPACTS                                                                                        | 33             |
|    | 7.1               | Traffic Noise Contours                                                                                                     | 33             |
|    | 7.2               | Existing Plus Project Buildout Condition Project Traffic Noise Levels                                                      | 36             |
|    | 7.3               | Future Project Traffic Noise Levels                                                                                        | 37             |
| 8  | ON                | -SITE TRANSPORTATION NOISE IMPACTS                                                                                         | 39             |
| 9  | REC               | CEIVER LOCATIONS                                                                                                           | 41             |
| 10 | OP                | ERATIONAL NOISE IMPACTS                                                                                                    | 43             |
|    | 10.1              | Operational Noise Sources                                                                                                  | 43             |
|    | 10.2              | Reference Noise Levels                                                                                                     | 43             |
|    | 10.3              | Operational Noise Levels                                                                                                   | 46             |
|    | 10.4              | Project Operational Noise Level Compliance                                                                                 | 47             |
| 11 | CO                | NSTRUCTION IMPACTS                                                                                                         | 49             |
|    | 11.1              | Construction Noise Levels                                                                                                  | 49             |
|    | 11.2              | Construction Reference Noise Levels                                                                                        | 49             |
|    | 11.3              | Construction Noise Analysis                                                                                                | 50             |
|    | 11.4              | Construction Noise Levels of Significance                                                                                  | 58             |
|    | 11.5              | Construction Vibration Impacts                                                                                             | 59             |
| 12 | REF               | ERENCES                                                                                                                    | 63             |
| 13 | CEF               | RTIFICATION                                                                                                                | 65             |

# **APPENDICES**

APPENDIX 3.1: CITY OF LOS ANGELES MUNICIPAL CODE APPENDIX 5.1: STUDY AREA PHOTOS APPENDIX 5.2: NOISE LEVEL MEASUREMENT WORKSHEETS APPENDIX 7.1: OFF-SITE TRAFFIC NOISE CONTOURS APPENDIX 10.1: OPERATIONAL NOISE CALCULATIONS

# LIST OF EXHIBITS

| EXHIBIT 1-A: | LOCATION MAP                                       | 6  |
|--------------|----------------------------------------------------|----|
| EXHIBIT 1-B: | SITE PLAN                                          | 7  |
| EXHIBIT 2-A: | TYPICAL NOISE LEVELS                               | 9  |
| EXHIBIT 2-B: | NOISE LEVEL INCREASE PERCEPTION 1                  | 13 |
| EXHIBIT 2-C: | TYPICAL LEVELS OF GROUND-BORNE VIBRATION 1         | 15 |
| EXHIBIT 5-A: | NOISE MEASUREMENT LOCATIONS                        | 28 |
| EXHIBIT 9-A: | RECEIVER LOCATIONS                                 | 12 |
| EXHIBIT 10-A | : OPERATIONAL NOISE SOURCE AND RECEIVER LOCATIONS  | 14 |
| EXHIBIT 11-A | : CONSTRUCTION NOISE SOURCE AND RECEIVER LOCATIONS | 57 |

#### **LIST OF TABLES**

| TABLE ES-1: SUMMARY OF SIGNIFICANCE FINDINGS                                   | 3    |
|--------------------------------------------------------------------------------|------|
| TABLE 4-1: SIGNIFICANCE CRITERIA SUMMARY                                       | . 23 |
| TABLE 5-1: 24-HOUR AMBIENT NOISE LEVEL MEASUREMENTS                            | . 27 |
| TABLE 6-1: OFF-SITE ROADWAY PARAMETERS                                         | . 30 |
| TABLE 6-2: AVERAGE DAILY TRAFFIC VOLUMES                                       | . 30 |
| TABLE 6-3: TIME OF DAY VEHICLE SPLITS                                          | . 31 |
| TABLE 6-4: DISTRIBUTION OF TRAFFIC FLOW BY VEHICLE TYPE (VEHICLE MIX)          | 31   |
| TABLE 6-5: VIBRATION SOURCE LEVELS FOR CONSTRUCTION EQUIPMENT                  | . 32 |
| TABLE 7-1: EXISTING WITHOUT PROJECT CONDITIONS NOISE CONTOURS                  | . 34 |
| TABLE 7-2: EXISTING WITH PROJECT CONDITIONS NOISE CONTOURS                     | 34   |
| TABLE 7-3: FUTURE WITHOUT PROJECT CONDITIONS NOISE CONTOURS                    | 35   |
| TABLE 7-4: FUTURE WITH PROJECT CONDITIONS NOISE CONTOURS                       | 36   |
| TABLE 7-5: EXISTING CONDITION OFF-SITE PROJECT-RELATED TRAFFIC NOISE INCREASES | 37   |
| TABLE 7-6: FUTURE OFF-SITE PROJECT-RELATED TRAFFIC NOISE IMPACTS               | 38   |
| TABLE 10-1: REFERENCE NOISE LEVEL MEASUREMENTS                                 | 43   |
| TABLE 10-2: OPERATIONAL NOISE LEVELS                                           | 46   |
| TABLE 10-3: DAYTIME OPERATIONAL NOISE LEVEL COMPLIANCE (DBA LEQ)               | 47   |
| TABLE 10-4: NIGHTTIME OPERATIONAL NOISE LEVEL COMPLIANCE (DBA LEQ)             | 48   |
| TABLE 11-1: CONSTRUCTION REFERENCE NOISE LEVELS                                | 50   |
| TABLE 11-2: DEMOLITION EQUIPMENT NOISE LEVELS                                  | 51   |
| TABLE 11-3: SITE PREPARATION EQUIPMENT NOISE LEVELS                            | 52   |
| TABLE 11-4: GRADING EQUIPMENT NOISE LEVELS                                     | 53   |
| TABLE 11-5: BUILDING CONSTRUCTION EQUIPMENT NOISE LEVELS                       | 54   |



| TABLE 11-6: PAVING EQUIPMENT NOISE LEVELS                                       | . 55 |
|---------------------------------------------------------------------------------|------|
| TABLE 11-7: ARCHITECTURAL COATING EQUIPMENT NOISE LEVELS                        | . 56 |
| TABLE 11-8: UNMITIGATED CONSTRUCTION EQUIPMENT NOISE LEVEL SUMMARY (DBA LEQ)    | . 58 |
| TABLE 11-9: UNMITIGATED CONSTRUCTION EQUIPMENT NOISE LEVEL COMPLIANCE (DBA LEQ) | . 59 |
| TABLE 11-10: CONSTRUCTION EQUIPMENT VIBRATION LEVELS                            | . 61 |



# LIST OF ABBREVIATED TERMS

| (1)              | Reference                                             |
|------------------|-------------------------------------------------------|
| ADT              | Average Daily Traffic                                 |
| ANSI             | American National Standards Institute                 |
| Calveno          | California Vehicle Noise                              |
| CEQA             | California Environmental Quality Act                  |
| CNEL             | Community Noise Equivalent Level                      |
| dBA              | A-weighted decibels                                   |
| EPA              | Environmental Protection Agency                       |
| FHWA             | Federal Highway Administration                        |
| FTA              | Federal Transit Administration                        |
| INCE             | Institute of Noise Control Engineering                |
| L <sub>eq</sub>  | Equivalent continuous (average) sound level           |
| L <sub>max</sub> | Maximum level measured over the time interval         |
| L <sub>min</sub> | Minimum level measured over the time interval         |
| mph              | Miles per hour                                        |
| NIOSH            | National Institute for Occupational Safety and Health |
| OSHA             | Occupational Safety and Health Administration         |
| PPV              | Peak Particle Velocity                                |
| Project          | Thatcher Yard Residential                             |
| REMEL            | Reference Energy Mean Emission Level                  |
| RMS              | Root-mean-square                                      |
| VdB              | Vibration Decibels                                    |



This page intentionally left blank



# **EXECUTIVE SUMMARY**

Urban Crossroads, Inc. has prepared this noise study to determine the noise exposure and the necessary noise attenuation measures for the proposed Thatcher Yard Residential development ("Project"). The Project site is located at 3233 S. Thatcher Avenue in the City of Los Angeles. The Project proposes the construction of 68 affordable senior housing dwelling units and 30 affordable family housing dwelling units. This study has been prepared consistent with applicable City of Los Angeles noise standards and significance criteria, consistent with guidance provided in Appendix G of the California Environmental Quality Act (CEQA). (1)

#### **OFF-SITE TRAFFIC NOISE ANALYSIS**

Traffic generated by the proposed Project will influence the traffic noise levels in surrounding offsite areas. To quantify the off-site traffic noise increases on the surrounding off-site areas, the changes in traffic noise levels on roadway segments surrounding the Project site were estimated based on the change in the average daily traffic (ADT) volumes. The traffic noise levels provided in this analysis are based on the traffic forecasts found in the *Technical Memorandum - Thatcher Yard Residential Project* prepared by Linscott, Law & Greenspan, Engineers. (2) To assess the offsite noise level impacts associated with the proposed Project, noise contour boundaries were developed for Existing and Future conditions for both the with and without Project traffic conditions. The off-site traffic noise analysis shows that the Project noise level contributions will be *less than significant* at adjacent noise-sensitive land uses under all traffic scenarios.

#### **ON-SITE TRANSPORTATION NOISE ANALYSIS**

An on-site exterior transportation noise analysis has been completed to determine the potential noise exposure and to identify potential necessary noise attenuation measures for the proposed Thatcher Yard Residential Project. It is expected that the Project will not be exposed to a primary source of transportation noise impacts. The Project will, however, experience some background traffic noise impacts from adjacent local streets and the Los Angeles International Airport (LAX). However, due to the distance and intervening structures from these noise sources, transportation noise will not make a significant contribution to the noise environment at the Project site requiring detailed analysis.

The Project site is located roughly 2.6 miles north of LAX. Based on the future LAX noise level contour boundaries prepared by ESA for the Los Angeles World Airports and the Los Angeles County GIS Portal Airport Land Use Compatibility Contours as of January 2019, the Project site is located outside of the 65 dBA CNEL contour boundary of LAX. As indicated by the City of Los Angeles General Plan Noise Element, residential uses with exterior noise levels between 55 to 70 dBA CNEL are considered *conditionally acceptable*. Moreover, existing noise level measurements in the Project study area indicate that the existing ambient noise levels range from 58.0 to 67.5 dBA CNEL. Therefore, the Project residential uses are considered *conditionally acceptable*, and interior noise Project Design Features are provided to satisfy the State of California Building Code and City of Los Angeles 45 dBA CNEL interior noise level standards. As such, the Project site would



not be exposed to excessive noise levels from airport operations, and therefore, impacts are considered *less than significant*.

#### INTERIOR NOISE PROJECT DESIGN FEATURES

To satisfy the City of Los Angeles 45 dBA CNEL interior noise standards the Project shall provide the following or equivalent noise attenuation measures, consistent with the City of Los Angeles Building Code, Section 91.1207.11.2 45 dBA CNEL interior noise level standard:

- <u>Windows & Glass Doors</u>: All windows and glass doors shall be well fitted, well weather-stripped assemblies and shall have a minimum sound transmission class (STC) rating of 27.
- <u>Exterior Doors (Non-Glass)</u>: All exterior doors shall be well weather-stripped and have minimum STC ratings of 27. Well-sealed perimeter gaps around the doors are essential to achieve the optimal STC rating. (3)
- <u>Walls:</u> At any penetrations of exterior walls by pipes, ducts, or conduits, the space between the wall and pipes, ducts, or conduits shall be caulked or filled with mortar to form an airtight seal.
- <u>Roof:</u> Roof sheathing of wood construction shall be per manufacturer's specification or caulked plywood of at least one-half inch thick. Ceilings shall be per manufacturer's specification or well-sealed gypsum board of at least one-half inch thick. Insulation with at least a rating of R-19 shall be used in the attic space.
- <u>Ventilation:</u> Arrangements for any habitable room shall be such that any exterior door or window can be kept closed when the room is in use and still receive circulated air. A forced air circulation system (e.g. air conditioning) or active ventilation system (e.g. fresh air supply) shall be provided which satisfies the requirements of the Uniform Building Code.

With the interior Project Design Features provided by the Project, interior noise levels in residential units are expected to meet the City of Los Angeles 45 dBA CNEL interior noise level standards for residential development.

#### **OPERATIONAL NOISE ANALYSIS**

The Project-related operational noise sources are expected to include mechanical ventilation equipment, trash enclosure activity, a pad-mounted transformer, and playground/park activity. Using reference noise levels to represent the potential noise sources within the Thatcher Yard Residential site, this analysis estimates the Project-related operational (stationary-source) noise levels at the noise-sensitive receiver locations. The proposed Project's residential land uses are considered noise-sensitive receivers. Consistent with the existing residential land use in the study area, the Project is not expected to produce any substantial off-site operational noise source activity from its residential uses.

The noise analysis shows that the Project-related operational noise levels will satisfy the City of Los Angeles exterior noise level standards at nearby off-site receiver locations, and therefore, will not generate noise levels which exceed the existing ambient conditions by 5 dBA  $L_{eq}$  during the daytime and nighttime hours, respectively. As such, the operational noise level impacts associated with the proposed Project activities, such as the mechanical ventilation equipment,



trash enclosure activity, a pad-mounted transformer, and playground/park activity, will be *less* than significant.

#### **CONSTRUCTION NOISE ANALYSIS**

Project construction is expected to create temporary and intermittent high-level noise conditions at receivers surrounding the Project site when certain activities occur at the closest point to the nearby receiver locations from the center of Project construction activity. Using sample reference noise levels to represent the planned construction activities of the Thatcher Yard Residential site, this analysis estimates the Project-related construction noise levels at nearby sensitive receiver locations. The results of the construction noise analysis show that the unmitigated construction noise levels will satisfy the City of Los Angeles Municipal Code 75 dBA L<sub>eq</sub> exterior construction noise level standard at the nearby sensitive receiver locations and will, therefore, result in a *less than significant* impact.

#### **CONSTRUCTION VIBRATION ANALYSIS**

Based on the reference vibration levels provided by the Federal Transit Administration, a large bulldozer represents the peak source of vibration with a reference velocity of 0.089 in/sec peak-particle-velocity (PPV) at 25 feet. At distances ranging from 29 to 81 feet from primary Project construction activities, construction vibration velocity levels are expected to range from 0.015 to 0.071 in/sec PPV. Based on the Caltrans older residential building damage threshold of 0.3 in/sec PPV, the proposed Project construction activities would result in vibration levels which are anticipated to remain below the threshold for building damage, and therefore, represents a *less than significant* impact.

#### SUMMARY OF SIGNIFICANCE FINDINGS

The results of this Thatcher Yard Residential Noise Impact Analysis are summarized below based on the significance criteria in Section 4 of this report. Table ES-1 shows the findings of significance for each potential noise and/or vibration impact with Project Design Features.

| Analysia               | Report  | Significance Findings |           |  |
|------------------------|---------|-----------------------|-----------|--|
| Analysis               | Section | Unmitigated           | Mitigated |  |
| Off-Site Traffic Noise | 7       | Less Than Significant | -         |  |
| On-Site Traffic Noise  | 8       | Less Than Significant | -         |  |
| Operational Noise      | 10      | Less Than Significant | -         |  |
| Construction Noise     | 11      | Less Than Significant | -         |  |
| Construction Vibration |         | Less Than Significant | -         |  |

#### TABLE ES-1: SUMMARY OF SIGNIFICANCE FINDINGS



This page intentionally left blank



# 1 INTRODUCTION

This noise analysis has been completed to determine the noise impacts associated with the development of the proposed Thatcher Yard Residential ("Project"). This noise study describes the proposed Project, provides information regarding noise fundamentals, outlines the local regulatory setting, provides the study methods and procedures for traffic noise analysis, and evaluates the future exterior noise environment. In addition, this study includes an analysis of the potential Project-related long-term operational noise and short-term construction noise and vibration impacts.

#### **1.1** SITE LOCATION

The proposed Thatcher Yard Residential Project is located at 3233 S. Thatcher Avenue in the City of Los Angeles, as shown on Exhibit 1-A. Existing land uses in the Project study area include residential uses to the north, south, east, and west.

#### **1.2 PROJECT DESCRIPTION**

The Project proposes the construction of 68 affordable senior housing dwelling units and 30 affordable family housing dwelling units, as shown on Exhibit 1-B.

Project-related stationary-source (operational) noise sources are expected to include: mechanical ventilation equipment, trash enclosure activity, a pad-mounted transformer, and playground/park activity. The proposed residential land uses are considered noise-sensitive receiving land uses and are not expected to include any specific type of operational noise levels beyond the typical noise sources associated with existing residential land use in the Project study area.





#### EXHIBIT 1-A: LOCATION MAP





# EXHIBIT 1-B: SITE PLAN

~

This page intentionally left blank



# 2 FUNDAMENTALS

Noise has been simply defined as "unwanted sound." Sound becomes unwanted when it interferes with normal activities, when it causes actual physical harm or when it has adverse effects on health. Noise is measured on a logarithmic scale of sound pressure level known as a decibel (dB). A-weighted decibels (dBA) approximate the subjective response of the human ear to broad frequency noise source by discriminating against very low and very high frequencies of the audible spectrum. They are adjusted to reflect only those frequencies which are audible to the human ear. Exhibit 2-A presents a summary of the typical noise levels and their subjective loudness and effects that are described in more detail below.

| COMMON OUTDOOR<br>ACTIVITIES                         | COMMON INDOOR<br>ACTIVITIES                    | A - WEIGHTED<br>SOUND LEVEL dBA | SUBJECTIVE<br>LOUDNESS | EFFECTS OF<br>NOISE |  |
|------------------------------------------------------|------------------------------------------------|---------------------------------|------------------------|---------------------|--|
| THRESHOLD OF PAIN                                    |                                                | 140                             |                        |                     |  |
| NEAR JET ENGINE                                      |                                                | 130                             | INTOLERABLE OR         |                     |  |
|                                                      |                                                | 120                             | DEAFENING              | HEARING LOSS        |  |
| JET FLY-OVER AT 300m (1000 ft)                       | ROCK BAND                                      | 110                             |                        |                     |  |
| LOUD AUTO HORN                                       |                                                | 100                             |                        |                     |  |
| GAS LAWN MOWER AT 1m (3 ft)                          |                                                | 90                              | VERY NOISY             |                     |  |
| DIESEL TRUCK AT 15m (50 ft),<br>at 80 km/hr (50 mph) | FOOD BLENDER AT 1m (3 ft)                      | 80                              |                        | SPEECH              |  |
| NOISY URBAN AREA, DAYTIME                            | VACUUM CLEANER AT 3m (10 ft)                   | 70                              | LOUD                   |                     |  |
| HEAVY TRAFFIC AT 90m (300 ft)                        | NORMAL SPEECH AT 1m (3 ft)                     | 60                              |                        |                     |  |
| QUIET URBAN DAYTIME                                  | LARGE BUSINESS OFFICE                          | 50                              | MODERATE               |                     |  |
| QUIET URBAN NIGHTTIME                                | THEATER, LARGE CONFERENCE<br>ROOM (BACKGROUND) | 40                              |                        | DISTURBANCE         |  |
| QUIET SUBURBAN NIGHTTIME                             | LIBRARY                                        | 30                              |                        |                     |  |
| QUIET RURAL NIGHTTIME                                | BEDROOM AT NIGHT, CONCERT<br>HALL (BACKGROUND) | 20                              | FAINT                  |                     |  |
|                                                      | BROADCAST/RECORDING<br>STUDIO                  | 10                              |                        | NO EFFECT           |  |
| LOWEST THRESHOLD OF HUMAN<br>HEARING                 | LOWEST THRESHOLD OF HUMAN<br>HEARING           | 0                               | VERT FAIN)             |                     |  |

#### EXHIBIT 2-A: TYPICAL NOISE LEVELS

Source: Environmental Protection Agency Office of Noise Abatement and Control, Information on Levels of Environmental Noise Requisite to Protect Public Health and Welfare with an Adequate Margin of Safety (EPA/ONAC 550/9-74-004) March 1974.

#### 2.1 RANGE OF NOISE

Since the range of intensities that the human ear can detect is so large, the scale frequently used to measure intensity is a scale based on multiples of 10, the logarithmic scale. The scale for measuring intensity is the decibel scale. Each interval of 10 decibels indicates a sound energy ten times greater than before, which is perceived by the human ear as being roughly twice as loud. (4) The most common sounds vary between 40 dBA (very quiet) to 100 dBA (very loud). Normal conversation at three feet is roughly at 60 dBA, while loud jet engine noises equate to 110 dBA



at approximately 100 feet, which can cause serious discomfort. (5) Another important aspect of noise is the duration of the sound and the way it is described and distributed in time.

### 2.2 NOISE DESCRIPTORS

Environmental noise descriptors are generally based on averages, rather than instantaneous, noise levels. The most commonly used figure is the equivalent level ( $L_{eq}$ ). Equivalent sound levels are not measured directly but are calculated from sound pressure levels typically measured in A-weighted decibels (dBA). The equivalent sound level ( $L_{eq}$ ) represents a steady state sound level containing the same total energy as a time varying signal over a given sample period and is commonly used to describe the "average" noise levels within the environment.

Peak hour or average noise levels, while useful, do not completely describe a given noise environment. Noise levels lower than peak hour may be disturbing if they occur during times when quiet is most desirable, namely evening and nighttime (sleeping) hours. To account for this, the Day-Night Average Noise Level (LDN) and the Community Noise Equivalent Level (CNEL), representing a composite 24- hour noise level is utilized. The LDN and CNEL are weighted averages of the intensity of a sound, with corrections for time of day, and averaged over 24 hours. The LDN time of day corrections include the addition of 10 decibels to dBA L<sub>eq</sub> sound levels at night between 10:00 p.m. and 7:00 a.m. The CNEL time of day corrections require the addition of 5 decibels to dBA L<sub>eq</sub> sound levels in the evening from 7:00 p.m. to 10:00 p.m., in addition to the corrections for the LDN. These additions are made to account for the noise sensitive time periods during the evening and night hours when sound appears louder. LDN and CNEL do not represent the actual sound level heard at any time, but rather represent the total sound exposure. The City of Los Angeles relies on the 24-hour LDN level to assess land use compatibility with transportation related noise sources, however, this analysis uses the CNEL noise level to apply the more conservative evening hour corrections to the 24-hour noise levels.

#### 2.3 SOUND PROPAGATION

When sound propagates over a distance, it changes in level and frequency content. The way noise reduces with distance depends on the following factors.

#### 2.3.1 GEOMETRIC SPREADING

Sound from a localized source (i.e., a stationary point source) propagates uniformly outward in a spherical pattern. The sound level attenuates (or decreases) at a rate of 6 dB for each doubling of distance from a point source. Highways consist of several localized noise sources on a defined path and hence can be treated as a line source, which approximates the effect of several point sources. Noise from a line source propagates outward in a cylindrical pattern, often referred to as cylindrical spreading. Sound levels attenuate at a rate of 3 dB for each doubling of distance from a line source.



#### 2.3.2 GROUND ABSORPTION

The propagation path of noise from a highway to a receiver is usually very close to the ground. Noise attenuation from ground absorption and reflective wave canceling adds to the attenuation associated with geometric spreading. Traditionally, the excess attenuation has also been expressed in terms of attenuation per doubling of distance. This approximation is usually sufficiently accurate for distances of less than 200 ft. For acoustically hard sites (i.e., sites with a reflective surface between the source and the receiver, such as a parking lot or body of water), no excess ground attenuation is assumed. For acoustically absorptive or soft sites (i.e., those sites with an absorptive ground surface between the source and the receiver and the receiver such as soft dirt, grass, or scattered bushes and trees), an excess ground attenuation value of 1.5 dB per doubling of distance is normally assumed. When added to the cylindrical spreading, the excess ground attenuation results in an overall drop-off rate of 4.5 dB per doubling of distance from a line source.

#### 2.3.3 ATMOSPHERIC EFFECTS

Receivers located downwind from a source can be exposed to increased noise levels relative to calm conditions, whereas locations upwind can have lowered noise levels. Sound levels can be increased at large distances (e.g., more than 500 feet) due to atmospheric temperature inversion (i.e., increasing temperature with elevation). Other factors such as air temperature, humidity, and turbulence can also have significant effects.

#### 2.3.4 SHIELDING

A large object or barrier in the path between a noise source and a receiver can substantially attenuate noise levels at the receiver. The amount of attenuation provided by shielding depends on the size of the object and the frequency content of the noise source. Shielding by trees and other such vegetation typically only has an "out of sight, out of mind" effect. That is, the perception of noise impact tends to decrease when vegetation blocks the line-of-sight to nearby resident. However, for vegetation to provide a substantial, or even noticeable, noise reduction, the vegetation area must be at least 15 feet in height, 100 feet wide and dense enough to completely obstruct the line-of sight between the source and the receiver. This size of vegetation may provide up to 5 dBA of noise reduction. The FHWA does not consider the planting of vegetation to be a noise abatement measure.

#### 2.4 NOISE CONTROL

Noise control is the process of obtaining an acceptable noise environment for an observation point or receiver by controlling the noise source, transmission path, receiver, or all three. This concept is known as the source-path-receiver concept. In general, noise control measures can be applied to these three elements.



# **2.5** Noise Barrier Attenuation

Effective noise barriers can reduce noise levels by 10 to 15 dBA, cutting the loudness of traffic noise in half. A noise barrier is most effective when placed close to the noise source or receiver. Noise barriers, however, do have limitations. For a noise barrier to work, it must be high enough and long enough to block the path of the noise source. (6)

# 2.6 LAND USE COMPATIBILITY WITH NOISE

Some land uses are more tolerant of noise than others. For example, schools, hospitals, churches and residences are more sensitive to noise intrusion than are commercial or industrial developments and related activities. As ambient noise levels affect the perceived amenity or livability of a development, so too can the mismanagement of noise impacts impair the economic health and growth potential of a community by reducing the area's desirability as a place to live, shop and work. For this reason, land use compatibility with the noise environment is an important consideration in the planning and design process. The FHWA encourages State and Local government to regulate land development in such a way that noise-sensitive land uses are either prohibited from being located adjacent to a highway, or that the developments are planned, designed, and constructed in such a way that noise impacts are minimized. (7)

# 2.7 COMMUNITY RESPONSE TO NOISE

Community responses to noise may range from registering a complaint by telephone or letter, to initiating court action, depending upon everyone's susceptibility to noise and personal attitudes about noise. Several factors are related to the level of community annoyance including:

- Fear associated with noise producing activities;
- Socio-economic status and educational level;
- Perception that those affected are being unfairly treated;
- Attitudes regarding the usefulness of the noise-producing activity;
- Belief that the noise source can be controlled.

Approximately ten percent of the population has a very low tolerance for noise and will object to any noise not of their making. Consequently, even in the quietest environment, some complaints will occur. Another twenty-five percent of the population will not complain even in very severe noise environments. Thus, a variety of reactions can be expected from people exposed to any given noise environment. (8) Surveys have shown that about ten percent of the people exposed to traffic noise of 60 dBA will report being highly annoyed with the noise, and each increase of one dBA is associated with approximately two percent more people being highly annoyed. When traffic noise exceeds 60 dBA or aircraft noise exceeds 55 dBA, people may begin to complain. (8)

Despite this variability in behavior on an individual level, the population can be expected to exhibit the following responses to changes in noise levels as shown on Exhibit 2-B. An increase or decrease of 1 dBA cannot be perceived except in carefully controlled laboratory experiments, a change of 3 dBA are considered *barely perceptible*, and changes of 5 dBA are considered *readily perceptible*. (6)



EXHIBIT 2-B: NOISE LEVEL INCREASE PERCEPTION

#### 2.8 EXPOSURE TO HIGH NOISE LEVELS

The Occupational Safety and Health Administration (OSHA) sets legal limits on noise exposure in the workplace. The permissible exposure limit (PEL) for a worker over an eight-hour day is 90 dBA. The OSHA standard uses a 5 dBA exchange rate. This means that when the noise level is increased by 5 dBA, the amount of time a person can be exposed to a certain noise level to receive the same dose is cut in half. The National Institute for Occupational Safety and Health (NIOSH) has recommended that all worker exposures to noise should be controlled below a level equivalent to 85 dBA for eight hours to minimize occupational noise induced hearing loss. NIOSH also recommends a 3 dBA exchange rate so that every increase by 3 dBA doubles the amount of the noise and halves the recommended amount of exposure time. (9)

OSHA has implemented requirements to protect all workers in general industry (e.g. the manufacturing and the service sectors) for employers to implement a Hearing Conservation Program where workers are exposed to a time weighted average noise level of 85 dBA or higher over an eight-hour work shift. Hearing Conservation Programs require employers to measure noise levels, provide free annual hearing exams and free hearing protection, provide training, and conduct evaluations of the adequacy of the hearing protectors in use unless changes to tools, equipment and schedules are made so that they are less noisy and worker exposure to noise is less than the 85 dBA. This noise study does not evaluate the noise exposure of workers within a project or construction site based on CEQA requirements, and instead, evaluates Project-related operational and construction noise levels at the nearby sensitive receiver locations in the Project study area. Further, periodic exposure to high noise levels in short duration, such as Project construction, is typically considered an annoyance and not impactful to human health. It would take several years of exposure to high noise levels to result in hearing impairment. (10)

#### 2.9 VIBRATION

Per the Federal Transit Administration (FTA) *Transit Noise Impact and Vibration Assessment* (11), vibration is the periodic oscillation of a medium or object. The rumbling sound caused by the vibration of room surfaces is called structure-borne noise. Sources of ground-borne vibrations include natural phenomena (e.g., earthquakes, volcanic eruptions, sea waves, landslides) or human-made causes (e.g., explosions, machinery, traffic, trains, construction equipment). Vibration sources may be continuous, such as factory machinery, or transient, such as explosions.



As is the case with airborne sound, ground-borne vibrations may be described by amplitude and frequency.

There are several different methods that are used to quantify vibration. The peak particle velocity (PPV) is defined as the maximum instantaneous peak of the vibration signal. The PPV is most frequently used to describe vibration impacts to buildings, but is not always suitable for evaluating human response (annoyance) because it takes some time for the human body to respond to vibration signals. Instead, the human body responds to average vibration amplitude often described as the root mean square (RMS). The RMS amplitude is defined as the average of the squared amplitude of the signal, and is most frequently used to describe the effect of vibration on the human body. Decibel notation (VdB) is commonly used to measure RMS. Decibel notation. Typically, ground-borne vibration generated by man-made activities attenuates rapidly with distance from the source of the vibration. Sensitive receivers for vibration include structures (especially older masonry structures), people (especially residents, the elderly, and sick), and vibration-sensitive equipment.

The background vibration-velocity level in residential areas is generally 50 VdB. Ground-borne vibration is normally perceptible to humans at approximately 65 VdB. For most people, a vibration-velocity level of 75 VdB is the approximate dividing line between barely perceptible and distinctly perceptible levels. Typical outdoor sources of perceptible ground-borne vibration are construction equipment, steel-wheeled trains, and traffic on rough roads. If a roadway is smooth, the ground-borne vibration is rarely perceptible. The range of interest is from approximately 50 VdB, which is the typical background vibration-velocity level, to 100 VdB, which is the general threshold where minor damage can occur in fragile buildings. Exhibit 2-C illustrates common vibration sources and the human and structural response to ground-borne vibration.





#### EXHIBIT 2-C: TYPICAL LEVELS OF GROUND-BORNE VIBRATION

\* RMS Vibration Velocity Level in VdB relative to 10<sup>-6</sup> inches/second

Source: Federal Transit Administration (FTA) Transit Noise Impact and Vibration Assessment.



This page intentionally left blank



# **3 REGULATORY SETTING**

To limit population exposure to physically and/or psychologically damaging as well as intrusive noise levels, the federal government, the State of California, various county governments, and most municipalities in the state have established standards and ordinances to control noise. In most areas, automobile and truck traffic is the major source of environmental noise. Traffic activity generally produces an average sound level that remains constant with time. Air and rail traffic, and commercial and industrial activities are also major sources of noise in some areas. Federal, state, and local agencies regulate different aspects of environmental noise. Federal and state agencies generally set noise standards for mobile sources such as aircraft and motor vehicles, while regulation of stationary sources is left to local agencies.

#### 3.1 STATE OF CALIFORNIA NOISE REQUIREMENTS

The State of California regulates freeway noise, sets standards for sound transmission, provides occupational noise control criteria, identifies noise standards and provides guidance for local land use compatibility. State law requires that each county and city adopt a General Plan that includes a Noise Element which is to be prepared per guidelines adopted by the Governor's Office of Planning and Research. (12) The purpose of the Noise Element is to *limit the exposure of the community to excessive noise levels*. In addition, the California Environmental Quality Act (CEQA) requires that all known environmental effects of a project be analyzed, including the potential environmental noise impacts.

#### **3.2** STATE OF CALIFORNIA BUILDING CODE

The State of California's noise insulation standards are codified in the California Code of Regulations, Title 24, Building Standards Administrative Code, Part 2, and the California Building Code. These noise standards are applied to new construction in California for controlling interior noise levels resulting from exterior noise sources. The regulations specify that acoustical studies must be prepared when noise-sensitive structures, such as residential buildings, schools, or hospitals, are developed near major transportation noise sources, and where such noise sources create an exterior noise level of 60 dBA CNEL or higher. Acoustical studies that accompany building plans for noise-sensitive land uses must demonstrate that the structure has been designed to limit interior noise in habitable rooms to acceptable noise levels. For new residential buildings, schools, and hospitals, the acceptable interior noise limit for new construction is 45 dBA CNEL.

#### 3.3 CITY OF LOS ANGELES GENERAL PLAN NOISE ELEMENT

The City of Los Angeles has adopted a Noise Element of the General Plan to identify goals, objectives, and policies for managing noise issues within the City. (13) The following goal and objectives are identified in the General Plan Noise Element:

GoalA city where noise does not reduce the quality of urban life.Objective 1Reduce airport and harbor related noise impacts.



- Objective 2
   Reduce or eliminate nonairport related intrusive noise, especially relative to noise sensitive uses.

   Objective 2
   Reduce or eliminate noise impacts associated with proposed development of land
- Objective 3 Reduce or eliminate noise impacts associated with proposed development of land and changes in land use.

Exhibit I of the City of Los Angeles General Plan Noise Element identifies *Guidelines for Noise Compatible Land Use* to evaluate the potential impacts of transportation-related noise. Multifamily residential land use, such as the Project, is considered *conditionally acceptable* with unmitigated exterior noise levels of less than 65 dBA CNEL. For *conditionally acceptable* exterior noise levels, new construction or development only after a detailed analysis of noise mitigation is made and needed noise insulation features are included in project design. Conventional construction, but with closed windows and fresh air supply systems or air conditioning normally will suffice. (13)

#### 3.4 CITY OF LOS ANGELES OPERATIONAL NOISE STANDARDS

To analyze noise impacts originating from a designated fixed location or private property such as the Thatcher Yard Residential Project, stationary-source (operational) noise such as the expected mechanical ventilation equipment, trash enclosure activity, a pad-mounted transformer, and playground/park activity are typically evaluated against standards established under a jurisdiction's Municipal Code or General Plan.

The City of Los Angeles Municipal Code, Chapter XI *Noise Regulation,* has set exterior noise limits to control community noise impacts from non-transportation noise sources (such as air-conditioning units, refrigeration, heating, pumping, and filtering equipment). Section 112.02 indicates that stationary noise sources shall not operate in such a manner as to cause the noise level at any sensitive use to exceed the existing ambient noise level by 5 dBA. (14) The City of Los Angeles Municipal Code, Chapter XI, is provided in Appendix 3.1.

#### **3.5** CITY OF LOS ANGELES CONSTRUCTION NOISE STANDARDS

Section 112.05 of the City's Municipal Code identifies exterior noise level limits for construction equipment *in any residential zone or within 500 feet thereof*, as follows: (14)

• 75dB(A) for construction, industrial, and agricultural machinery including crawler-tractors, dozers, rotary drills and augers, loaders, power shovels, cranes, derricks, motor graders, paving machines, off-highway trucks, ditchers, trenchers, compactors, scrapers, wagons, pavement breakers, compressors and pneumatic or other powered equipment.

Therefore, for the purpose of this noise study, the City of Los Angeles Municipal Code 75 dBA  $L_{eq}$  threshold is used to determine potential Project-related construction noise level impacts at nearby sensitive receiver locations.



#### **3.6 CONSTRUCTION VIBRATION STANDARDS**

The City of Los Angeles General Plan and Municipal Code do not identify specific vibration level standards. Therefore, applicable vibration standards identified by the California Department of Transportation ("Caltrans") *Transportation and Construction Vibration Guidance Manual* are used in this noise study. (4) The Caltrans vibration manual establishes thresholds for determining potential vibration impacts resulting in building damage. For older residential structures, Caltrans identifies a building damage threshold of 0.3 in/sec PPV which is used in this analysis to evaluate potential Project-related construction vibration impacts at the adjacent receiver locations.



This page intentionally left blank



# 4 SIGNIFICANCE CRITERIA

The following significance criteria are based on currently adopted guidance provided by Appendix G of the California Environmental Quality Act (CEQA) Guidelines. (1) For the purposes of this report, impacts would be potentially significant if the Project results in or causes:

- A. Generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?
- B. Generation of excessive ground-borne vibration or ground-borne noise levels?
- C. For a project located within the vicinity of a private airstrip or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?

While the City of Los Angeles General Plan Guidelines provide direction on noise compatibility and establish noise standards by land use type that are sufficient to assess the significance of noise impacts, they do not define the levels at which increases are considered substantial for use under Guideline A. CEQA Appendix G Guideline C applies to nearby public and private airports, if any, and the Project's land use compatibility.

#### 4.1 CEQA GUIDELINES NOT FURTHER ANALYZED

The Project site is located roughly 2.6 miles north of LAX. Based on the future LAX noise level contour boundaries prepared by ESA for the Los Angeles World Airports and the Los Angeles County GIS Portal Airport Land Use Compatibility Contours as of January 2019, the Project site is located outside of the 65 dBA CNEL contour boundary of LAX. As indicated by the City of Los Angeles General Plan Noise Element, residential uses with exterior noise levels between 55 to 70 dBA CNEL are considered *conditionally acceptable*. Moreover, existing noise level measurements in the Project study area indicate that the existing ambient noise levels range from 58.0 to 67.5 dBA CNEL. Therefore, the Project residential uses are considered *conditionally acceptable*, and interior noise Project Design Features are provided to satisfy the State of California Building Code and City of Los Angeles 45 dBA CNEL interior noise level standards. As such, the Project site would not be exposed to excessive noise levels from airport operations, and therefore, impacts are considered *less than significant*, and no further noise analysis is conducted in relation to Guideline C.



#### 4.2 SIGNIFICANCE CRITERIA

Noise impacts shall be considered significant if any of the following occur as a direct result of the proposed development. Table 4-1 shows the significance criteria summary matrix.

#### OFF-SITE OPERATIONAL TRAFFIC NOISE

- When the noise levels at existing and future noise-sensitive land uses (e.g. residential, etc.):
  - are less than 60 dBA CNEL and the Project creates a *readily perceptible* 5 dBA CNEL or greater Project-related noise level increase; or
  - range from 60 to 65 dBA CNEL and the Project creates a *barely perceptible* 3 dBA CNEL or greater Project-related noise level increase; or
  - already exceed 65 dBA CNEL, and the Project creates a community noise level impact of greater than 1.5 dBA CNEL (FICON, 1992).

#### **ON-SITE TRANSPORTATION NOISE**

• If the on-site exterior noise levels exceed the *conditionally acceptable* 65 dBA CNEL and the interior noise levels exceed 45 dBA CNEL at the residential uses located within the Project site (City of Los Angeles General Plan Noise Element and Building Code, Section 91.1207.11.2).

#### **OPERATIONAL STATIONARY-SOURCE NOISE**

• If Project-related operational (stationary source) noise levels exceed the exterior ambient noise levels at adjacent sensitive receiver locations by 5 dBA L<sub>eq</sub> (City of Los Angeles Municipal Code, Section 112.02).

#### CONSTRUCTION NOISE AND VIBRATION

- If Project-related construction activities generate noise levels which exceed the exterior noise level standard of 75 dBA L<sub>eq</sub> at adjacent sensitive receiver locations (City of Los Angeles Municipal Code, Section 112.05).
- If short-term Project generated construction vibration levels exceed Caltrans building damage vibration standard of 0.3 in/sec PPV at sensitive receiver locations (Caltrans Transportation and Construction Vibration Guidance Manual, Table 19).



| Analysia                                  |                                  | Condition(c)                                | Significance Criteria                                      |           |  |
|-------------------------------------------|----------------------------------|---------------------------------------------|------------------------------------------------------------|-----------|--|
| Analysis                                  | Land Use                         | Condition(s)                                | Daytime                                                    | Nighttime |  |
|                                           | Noise-<br>Sensitive <sup>1</sup> | if ambient is < 60 dBA CNEL                 | ≥ 5 dBA CNEL Project increase                              |           |  |
| Off-Site<br>Traffic<br>Noise <sup>1</sup> |                                  | if ambient is 60 - 65 dBA CNEL              | ≥ 3 dBA CNEL Project increase                              |           |  |
|                                           |                                  | if ambient is > 65 dBA CNEL                 | ≥ 1.5 dBA CNEL Project increase                            |           |  |
| On-Site                                   | Residential                      | Exterior Noise Level Standards              | 65 dBA CNEL                                                |           |  |
| Traffic Noise <sup>2</sup>                |                                  | Interior Noise Level Standards              | 45 dBA CNEL                                                |           |  |
| Operational<br>Noise <sup>3</sup>         | Noise-<br>Sensitive              | Exterior Noise Level Standards              | Existing Ambient Noise Level<br>plus 5 dBA L <sub>eq</sub> |           |  |
| Construction                              | Noise-<br>Sensitive              | Exterior Noise Level Standards <sup>4</sup> | 75 dBA L <sub>eq</sub>                                     | n/a       |  |
| Vibration                                 |                                  | Vibration Level Threshold <sup>5</sup>      | 0.3 in/sec PPV                                             | n/a       |  |

#### TABLE 4-1: SIGNIFICANCE CRITERIA SUMMARY

<sup>1</sup> Source: FICON, 1992.

<sup>2</sup> Sources: City of Los Angeles General Plan Noise Element, and Building Code, Section 91.1207.11.2 Allowable Interior Noise Levels.

<sup>3</sup> Source: City of Los Angeles Municipal Code, Section 112.02 (Appendix 3.1).

<sup>4</sup> Source: City of Los Angeles Municipal Code, Section 112.05 (Appendix 3.1).

<sup>5</sup> Source: Caltrans, Transportation & Construction Vibration Guidance Manual, September 2013.

"Daytime" = 7:00 a.m. to 10:00 p.m.; "Nighttime" = 10:00 p.m. to 7:00 a.m.; "n/a" = No construction activity is permitted during the nighttime hours.



This page intentionally left blank



# 5 EXISTING NOISE LEVEL MEASUREMENTS

To assess the existing noise level environment, six 24-hour noise level measurements were taken at sensitive receiver locations in the Project study area. The receiver locations were selected to describe and document the existing noise environment within the Project study area. Exhibit 5-A provides the boundaries of the Project study area and the noise level measurement locations. To fully describe the existing noise conditions, noise level measurements were collected by Urban Crossroads, Inc. on Tuesday, January 8<sup>th</sup>, 2019. Appendix 5.1 provides a series of study area photos.

# 5.1 MEASUREMENT PROCEDURE AND CRITERIA

To describe the existing noise environment, the hourly noise levels were measured during typical weekday conditions over a 24-hour period. By collecting individual hourly noise level measurements, it is possible to describe the daytime and nighttime hourly noise levels and calculate the 24-hour CNEL. The long-term noise readings were recorded using Piccolo Type 2 integrating sound level meter and dataloggers. The Piccolo sound level meters were calibrated using a Larson-Davis calibrator, Model CAL 150. All noise meters were programmed in "slow" mode to record noise levels in "A" weighted form. The sound level meters and microphones were equipped with a windscreen during all measurements. All noise level measurement equipment satisfies the American National Standards Institute (ANSI) standard specifications for sound level meters ANSI S1.4-2014/IEC 61672-1:2013. (15)

# 5.2 NOISE MEASUREMENT LOCATIONS

The long-term noise level measurements were positioned as close to the nearest sensitive receiver locations as possible to assess the existing ambient hourly noise levels surrounding the Project site. Both Caltrans and the FTA recognize that it is not reasonable to collect noise level measurements that can fully represent any part of a private yard, patio, deck or balcony normally used for human activity when estimating impacts for new development projects. This is demonstrated in the Caltrans general site location guidelines which indicate that, *sites must be free of noise contamination by sources other than sources of interest. Avoid sites located near sources such as barking dogs, lawnmowers, pool pumps, and air conditioners unless it is the express intent of the analyst to measure these sources. (4) Further, FTA guidance states, that it is not necessary nor recommended that existing noise exposure be determined by measuring at every noise-sensitive location in the project area. Rather, the recommended approach is to characterize the noise environment for clusters of sites based on measurements or estimates at representative locations in the community. (11)* 

Based on recommendations of Caltrans and the FTA, it is not necessary to collect measurements at each individual building or residence, because each receiver measurement represents a group of buildings that share acoustical equivalence. (11) In other words, the area represented by the receiver shares similar shielding, terrain, and geometric relationship to the reference noise source. Receivers represent a location of noise sensitive areas and are used to estimate the future noise level impacts. Collecting reference ambient noise level measurements at the nearby



sensitive receiver locations allows for a comparison of the before and after Project noise levels and is necessary to assess potential noise impacts due to the Project's contribution to the ambient noise levels.

#### 5.3 NOISE MEASUREMENT RESULTS

The noise measurements presented below focus on the average or equivalent sound levels ( $L_{eq}$ ). The equivalent sound level ( $L_{eq}$ ) represents a steady state sound level containing the same total energy as a time varying signal over a given sample period. Table 5-1 identifies the hourly daytime (7:00 a.m. to 10:00 p.m.) and nighttime (10:00 p.m. to 7:00 a.m.) noise levels at each noise level measurement location. Appendix 5.2 provides a summary of the existing hourly ambient noise levels described below:

- Location L1 represents the noise levels on Princeton Drive near the northern boundary of the Project site and existing single-family residential homes. The noise level measurements collected show an overall 24-hour exterior noise level of 59.9 dBA CNEL. The energy (logarithmic) average daytime noise level was calculated at 56.7 dBA L<sub>eq</sub> with an average nighttime noise level of 52.3 dBA L<sub>eq</sub>.
- Location L2 represents the noise levels on Thatcher Avenue near the eastern boundary of the Project site and Mirabella Apartment Homes. The noise level measurements collected show an overall 24-hour exterior noise level of 58.1 dBA CNEL. The energy (logarithmic) average daytime noise level was calculated at 56.2 dBA L<sub>eq</sub> with an average nighttime noise level of 49.6 dBA L<sub>eq</sub>.
- Location L3 represents the noise levels on Thatcher Avenue near the eastern boundary of the Project site and Mirabella Apartment Homes. The 24-hour CNEL indicates that the overall exterior noise level is 58.0 dBA CNEL. The energy (logarithmic) average daytime noise level was calculated at 56.3 dBA Leq with an average nighttime noise level of 49.3 dBA Leq.
- Location L4 represents the noise levels on Thatcher Avenue near the southern boundary of the Project site and Harbor Crossing Lane. The noise level measurements collected show an overall 24-hour exterior noise level of 59.3 dBA CNEL. The energy (logarithmic) average daytime noise level was calculated at 57.2 dBA L<sub>eq</sub> with an average nighttime noise level of 51.0 dBA L<sub>eq</sub>.
- Location L5 represents the noise levels on Oxford Avenue near the southwestern boundary
  of the Project site and existing single-family residential homes. The noise level measurements
  collected show an overall 24-hour exterior noise level of 58.5 dBA CNEL. The energy
  (logarithmic) average daytime noise level was calculated at 54.2 dBA L<sub>eq</sub> with an average
  nighttime noise level of 51.3 dBA L<sub>eq</sub>.
- Location L6 represents the noise levels on Oxford Avenue near the western boundary of the Project site and existing single-family residential homes. The 24-hour CNEL indicates that the overall exterior noise level is 67.5 dBA CNEL. The energy (logarithmic) average daytime noise level was calculated at 59.3 dBA L<sub>eq</sub> with an average nighttime noise level of 60.9 dBA L<sub>eq</sub>.



Table 5-1 provides the (energy average) noise levels used to describe the daytime and nighttime ambient conditions. These daytime and nighttime energy average noise levels represent the average of all hourly noise levels observed during these time periods expressed as a single number. Appendix 5.2 provides summary worksheets of the noise levels for each hour as well as the minimum, maximum, L<sub>1</sub>, L<sub>2</sub>, L<sub>5</sub>, L<sub>8</sub>, L<sub>25</sub>, L<sub>50</sub>, L<sub>90</sub>, L<sub>95</sub>, and L<sub>99</sub> percentile noise levels observed during the daytime and nighttime periods.

The background ambient noise levels in the Project study area are dominated by the transportation-related noise associated with the arterial roadway network. This includes auto and heavy truck activity near the noise level measurement locations. The 24-hour existing noise level measurements shown on Table 5-1 present the worst-case existing unmitigated ambient noise conditions.

| Location <sup>1</sup> | Distance<br>to<br>Project | Description                                                                                                                 | Energy Average<br>Noise Level<br>(dBA L <sub>eq</sub> ) <sup>2</sup> |           | CNEL |
|-----------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------|------|
|                       | Boundary<br>(Feet)        |                                                                                                                             | Daytime                                                              | Nighttime |      |
| L1                    | 48'                       | Located on Princeton Drive near the northern boundary of the Project site and existing single-family residential homes.     | 56.7                                                                 | 52.3      | 59.9 |
| L2                    | 0'                        | Located on Thatcher Avenue near the eastern boundary of the Project site and Mirabella Apartment Homes.                     | 56.2                                                                 | 49.6      | 58.1 |
| L3                    | 0'                        | Located on Thatcher Avenue near the eastern boundary of the Project site and Mirabella Apartment Homes.                     | 56.3                                                                 | 49.3      | 58.0 |
| L4                    | 50'                       | Located on Thatcher Avenue near the southern boundary of the Project site and Harbor Crossing Lane.                         | 57.2                                                                 | 51.0      | 59.3 |
| L5                    | 50'                       | Located on Oxford Avenue near the southwestern boundary of the Project site and existing single-family residential homes.   | 54.2                                                                 | 51.3      | 58.5 |
| L6                    | 0'                        | Located on Oxford Avenue near the western<br>boundary of the Project site and existing single-<br>family residential homes. | 59.3                                                                 | 60.9      | 67.5 |

#### TABLE 5-1: 24-HOUR AMBIENT NOISE LEVEL MEASUREMENTS

<sup>1</sup> See Exhibit 5-A for the noise level measurement locations.

<sup>2</sup> The long-term 24-hour measurement printouts are included in Appendix 5.2.

"Daytime" = 7:00 a.m. to 10:00 p.m.; "Nighttime" = 10:00 p.m. to 7:00 a.m.




#### **EXHIBIT 5-A: NOISE MEASUREMENT LOCATIONS**



# 6 METHODS AND PROCEDURES

The following section outlines the methods and procedures used to model and analyze the future traffic noise environment.

## 6.1 FHWA TRAFFIC NOISE PREDICTION MODEL

The estimated roadway noise impacts from vehicular traffic were calculated using a computer program that replicates the Federal Highway Administration (FHWA) Traffic Noise Prediction Model- FHWA-RD-77-108. (16) The FHWA Model arrives at a predicted noise level through a series of adjustments to the Reference Energy Mean Emission Level (REMEL). In California the national REMELs are substituted with the California Vehicle Noise (Calveno) Emission Levels. (17) Adjustments are then made to the REMEL to account for: the roadway classification (e.g., collector, secondary, major or arterial), the roadway active width (i.e., the distance between the center of the outermost travel lanes on each side of the roadway), the total average daily traffic (ADT), the travel speed, the percentages of automobiles, medium trucks, and heavy trucks in the traffic volume, the roadway grade, the angle of view (e.g., whether the roadway view is blocked), the site conditions ("hard" or "soft" relates to the absorption of the ground, pavement, or landscaping), and the percentage of total ADT which flows each hour throughout a 24-hour period.

## 6.2 OFF-SITE TRAFFIC NOISE PREDICTION MODEL INPUTS

Table 6-1 presents the roadway parameters used to assess the Project's off-site transportation noise impacts. Table 6-1 identifies the study area roadway segments, the distance from the centerline to adjacent land use based on the functional roadway classifications per the City of Los Angeles General Plan Mobility Element. For this analysis, soft site conditions are used to analyze the traffic noise impacts within the Project study area. Soft site conditions account for the sound propagation loss over natural surfaces such as normal earth and ground vegetation. Caltrans' research has shown that the use of soft site conditions is appropriate for the application of the FHWA traffic noise prediction model as used in this off-site traffic noise analysis. (18)

The Existing and Future average daily traffic volumes used for this study are presented on Table 6-2 and were provided by the *Technical Memorandum* - *Thatcher Yard Residential Project*. (2) Table 6-3 presents the time of day vehicle splits by vehicle type, and Table 6-4 presents the total traffic flow distributions (vehicle mixes) used in this analysis. The vehicle mix provides the hourly distribution percentages of automobile, medium trucks and heavy trucks for input into the FHWA Model based on roadway types.



| ID | Roadway           | Segment               | Distance From<br>Centerline to<br>Nearest Adjacent<br>Land Use (Feet) <sup>2</sup> | Vehicle Speed<br>(mph) <sup>3</sup> |
|----|-------------------|-----------------------|------------------------------------------------------------------------------------|-------------------------------------|
| 1  | Lincoln Bl.       | n/o W. Washington Bl. | 68'                                                                                | 40                                  |
| 2  | Lincoln Bl.       | s/o W. Washington Bl. | 68'                                                                                | 40                                  |
| 3  | Lincoln Bl.       | n/o Jefferson Wy.     | 68'                                                                                | 40                                  |
| 4  | Lincoln Bl.       | s/o Jefferson Wy.     | 68'                                                                                | 40                                  |
| 5  | Lincoln Bl.       | n/o Maxella Av.       | 68'                                                                                | 40                                  |
| 6  | Lincoln Bl.       | s/o Maxella Av.       | 68'                                                                                | 40                                  |
| 7  | Lincoln Bl.       | s/o Marina Expy.      | 68'                                                                                | 40                                  |
| 8  | W. Washington Bl. | w/o Lincoln Bl.       | 55'                                                                                | 35                                  |
| 9  | W. Washington Bl. | e/o Lincoln Bl.       | 55'                                                                                | 35                                  |
| 10 | Jefferson Wy.     | w/o Lincoln Bl.       | 30'                                                                                | 25                                  |
| 11 | Maxella Av.       | e/o Lincoln Bl.       | 50'                                                                                | 40                                  |
| 12 | Marina Expy.      | e/o Lincoln Bl.       | 52'                                                                                | 40                                  |

#### TABLE 6-1: OFF-SITE ROADWAY PARAMETERS

<sup>1</sup>Distance to adjacent land use is based upon the right-of-way distances for each functional roadway classification provided in the City of Los Angeles General Plan Mobility Element.

<sup>2</sup> Posted speed limits.

|    |                   |                       | Average Daily Traffic (1,000's) <sup>1</sup> |                 |                    |                 |  |  |
|----|-------------------|-----------------------|----------------------------------------------|-----------------|--------------------|-----------------|--|--|
| п  | Roadway           | Cogmont               | Exis                                         | ting            | Future             |                 |  |  |
| שו |                   | Segment               | Without<br>Project                           | With<br>Project | Without<br>Project | With<br>Project |  |  |
| 1  | Lincoln Bl.       | n/o W. Washington Bl. | 31.7                                         | 31.8            | 33.7               | 33.7            |  |  |
| 2  | Lincoln Bl.       | s/o W. Washington Bl. | 40.8                                         | 40.9            | 43.3               | 43.4            |  |  |
| 3  | Lincoln Bl.       | n/o Jefferson Wy.     | 41.6                                         | 41.7            | 44.2               | 44.3            |  |  |
| 4  | Lincoln Bl.       | s/o Jefferson Wy.     | 41.6                                         | 41.7            | 44.1               | 44.2            |  |  |
| 5  | Lincoln Bl.       | n/o Maxella Av.       | 38.5                                         | 38.6            | 40.9               | 41.0            |  |  |
| 6  | Lincoln Bl.       | s/o Maxella Av.       | 44.2                                         | 44.3            | 46.9               | 47.0            |  |  |
| 7  | Lincoln Bl.       | s/o Marina Expy.      | 34.4                                         | 34.5            | 36.5               | 36.6            |  |  |
| 8  | W. Washington Bl. | w/o Lincoln Bl.       | 23.7                                         | 23.7            | 25.1               | 25.2            |  |  |
| 9  | W. Washington Bl. | e/o Lincoln Bl.       | 22.7                                         | 22.7            | 24.1               | 24.1            |  |  |
| 10 | Jefferson Wy.     | w/o Lincoln Bl.       | 2.0                                          | 2.2             | 2.1                | 2.3             |  |  |
| 11 | Maxella Av.       | e/o Lincoln Bl.       | 11.2                                         | 11.3            | 11.9               | 11.9            |  |  |
| 12 | Marina Expy.      | e/o Lincoln Bl.       | 22.3                                         | 22.3            | 23.6               | 23.7            |  |  |

#### **TABLE 6-2: AVERAGE DAILY TRAFFIC VOLUMES**

<sup>1</sup> Source: Technical Memorandum - Thatcher Yard Residential Project, Linscott, Law & Greenspan, Engineers.



| Time Deried                     | Vehicle Type |               |              |  |  |  |
|---------------------------------|--------------|---------------|--------------|--|--|--|
| Time Period                     | Autos        | Medium Trucks | Heavy Trucks |  |  |  |
| Daytime (7:00 a.m 7:00 p.m.)    | 77.50%       | 84.80%        | 86.50%       |  |  |  |
| Evening (7:00 p.m 10:00 p.m.)   | 12.90%       | 4.90%         | 2.70%        |  |  |  |
| Nighttime (10:00 p.m 7:00 p.m.) | 9.60%        | 10.30%        | 10.80%       |  |  |  |
| Total:                          | 100.00%      | 100.00%       | 100.00%      |  |  |  |

#### TABLE 6-3: TIME OF DAY VEHICLE SPLITS

Source: Typical southern California vehicle mix.

#### TABLE 6-4: DISTRIBUTION OF TRAFFIC FLOW BY VEHICLE TYPE (VEHICLE MIX)

| Roadway      | Autos  | Medium Trucks | Heavy Trucks | lotai   |
|--------------|--------|---------------|--------------|---------|
| All Roadways | 97.42% | 1.84%         | 0.74%        | 100.00% |

Source: Typical southern California vehicle mix.

#### 6.3 CONSTRUCTION VIBRATION ASSESSMENT

This analysis focuses on the potential ground-borne vibration associated with vehicular traffic and construction activities. Ground-borne vibration levels from automobile traffic are generally overshadowed by vibration generated by heavy trucks that roll over the same uneven roadway surfaces. However, due to the rapid drop-off rate of ground-borne vibration and the short duration of the associated events, vehicular traffic-induced ground-borne vibration is rarely perceptible beyond the roadway right-of-way, and rarely results in vibration levels that cause damage to buildings in the vicinity.

However, while vehicular traffic is rarely perceptible, construction has the potential to result in varying degrees of temporary ground vibration, depending on the specific construction activities and equipment used. Ground vibration levels associated with various types of construction equipment are summarized on Table 6-5. Based on the representative vibration levels presented for various construction equipment types, it is possible to estimate potential vibration impacts with the following vibration assessment methods defined by the FTA. To describe potential vibration impacts the FTA provides the following equation:  $PPV_{equip} = PPV_{ref} \times (25/D)^{1.5}$ 



| Equipment       | PPV (in/sec)<br>at 25 feet |
|-----------------|----------------------------|
| Small bulldozer | 0.003                      |
| Jackhammer      | 0.035                      |
| Loaded Trucks   | 0.076                      |
| Large bulldozer | 0.089                      |

#### TABLE 6-5: VIBRATION SOURCE LEVELS FOR CONSTRUCTION EQUIPMENT

Source: Federal Transit Administration, Transit Noise and Vibration Impact Assessment, September 2018.



# 7 OFF-SITE TRANSPORTATION NOISE IMPACTS

To assess the off-site transportation CNEL noise level impacts associated with development of the proposed Project, noise contours were developed based on the *Technical Memorandum* - *Thatcher Yard Residential Project*. (2) Noise contour boundaries represent the equal levels of noise exposure and are measured in CNEL from the center of the roadway. Noise contours were developed for the following traffic scenarios:

- <u>Existing Without / With Project Conditions</u>: This scenario refers to the existing present-day noise conditions, without and with the proposed Project.
- <u>Future Without / With Project</u>: This scenario refers to the background future noise conditions without and with the proposed Project, and includes all cumulative projects identified in the Traffic Impact Analysis.

## 7.1 TRAFFIC NOISE CONTOURS

To quantify the Project's operational traffic noise impacts on the surrounding areas, the changes in traffic noise levels on the study area roadway segments conveying Project traffic were calculated based on the changes in the average daily traffic volumes. Noise contours represent the distance to noise levels of a constant value and are measured from the center of the roadway for the 70, 65, and 60 dBA noise levels. The noise contours do not consider the effect of any existing noise barriers or topography that may affect ambient noise levels. In addition, since the noise contours reflect modeling of vehicular noise on area roadways, they appropriately do not reflect noise contribution from any surrounding stationary noise sources within the Project study area. Tables 7-1 to 7-4 present a summary of the exterior traffic noise levels for the study area roadway segments analyzed from the without Project to the with Project conditions in each of the two timeframes: Existing and Future conditions. Appendix 7.1 includes a summary of the traffic noise level contours for each of the traffic scenarios.



|    |                   |                       | CNEL at<br>Nearest<br>Adjacent | Distance to Contour<br>from Centerline<br>(Feet) <sup>1</sup> |                   |                   |
|----|-------------------|-----------------------|--------------------------------|---------------------------------------------------------------|-------------------|-------------------|
| ID | Road              | Segment               | Land<br>Use<br>(dBA)           | 70<br>dBA<br>CNEL                                             | 65<br>dBA<br>CNEL | 60<br>dBA<br>CNEL |
| 1  | Lincoln Bl.       | n/o W. Washington Bl. | 63.5                           | RW                                                            | 116               | 250               |
| 2  | Lincoln Bl.       | s/o W. Washington Bl. | 64.6                           | RW                                                            | 137               | 295               |
| 3  | Lincoln Bl.       | n/o Jefferson Wy.     | 64.7                           | RW                                                            | 139               | 299               |
| 4  | Lincoln Bl.       | s/o Jefferson Wy.     | 64.7                           | RW                                                            | 139               | 299               |
| 5  | Lincoln Bl.       | n/o Maxella Av.       | 64.3                           | RW                                                            | 132               | 284               |
| 6  | Lincoln Bl.       | s/o Maxella Av.       | 64.9                           | RW                                                            | 145               | 311               |
| 7  | Lincoln Bl.       | s/o Marina Expy.      | 63.8                           | RW                                                            | 122               | 264               |
| 8  | W. Washington Bl. | w/o Lincoln Bl.       | 61.9                           | RW                                                            | 75                | 162               |
| 9  | W. Washington Bl. | e/o Lincoln Bl.       | 61.8                           | RW                                                            | 73                | 157               |
| 10 | Jefferson Wy.     | w/o Lincoln Bl.       | 51.1                           | RW                                                            | RW                | RW                |
| 11 | Maxella Av.       | e/o Lincoln Bl.       | 60.7                           | RW                                                            | 56                | 122               |
| 12 | Marina Expy.      | e/o Lincoln Bl.       | 63.7                           | RW                                                            | 94                | 202               |

TABLE 7-1: EXISTING WITHOUT PROJECT CONDITIONS NOISE CONTOURS

<sup>1</sup> "RW" = Location of the respective noise contour falls within the right-of-way of the road.

#### TABLE 7-2: EXISTING WITH PROJECT CONDITIONS NOISE CONTOURS

|    |                   |                       | CNEL at<br>Nearest<br>Adiacent | Distance to Contour<br>from Centerline<br>(Feet) <sup>1</sup> |                   |                   |
|----|-------------------|-----------------------|--------------------------------|---------------------------------------------------------------|-------------------|-------------------|
| ID | Road              | Segment               | Land<br>Use<br>(dBA)           | 70<br>dBA<br>CNEL                                             | 65<br>dBA<br>CNEL | 60<br>dBA<br>CNEL |
| 1  | Lincoln Bl.       | n/o W. Washington Bl. | 63.5                           | RW                                                            | 116               | 250               |
| 2  | Lincoln Bl.       | s/o W. Washington Bl. | 64.6                           | RW                                                            | 137               | 296               |
| 3  | Lincoln Bl.       | n/o Jefferson Wy.     | 64.7                           | RW                                                            | 139               | 300               |
| 4  | Lincoln Bl.       | s/o Jefferson Wy.     | 64.7                           | RW                                                            | 139               | 300               |
| 5  | Lincoln Bl.       | n/o Maxella Av.       | 64.3                           | RW                                                            | 132               | 285               |
| 6  | Lincoln Bl.       | s/o Maxella Av.       | 64.9                           | RW                                                            | 145               | 312               |
| 7  | Lincoln Bl.       | s/o Marina Expy.      | 63.9                           | RW                                                            | 123               | 264               |
| 8  | W. Washington Bl. | w/o Lincoln Bl.       | 61.9                           | RW                                                            | 75                | 162               |
| 9  | W. Washington Bl. | e/o Lincoln Bl.       | 61.8                           | RW                                                            | 73                | 157               |
| 10 | Jefferson Wy.     | w/o Lincoln Bl.       | 51.6                           | RW                                                            | RW                | RW                |
| 11 | Maxella Av.       | e/o Lincoln Bl.       | 60.7                           | RW                                                            | 57                | 122               |
| 12 | Marina Expy.      | e/o Lincoln Bl.       | 63.7                           | RW                                                            | 94                | 202               |

<sup>1</sup> "RW" = Location of the respective noise contour falls within the right-of-way of the road.



|    |                   |                       | CNEL at<br>Nearest<br>Adjacent | Distance to Contour<br>from Centerline<br>(Feet) <sup>1</sup> |                   |                   |
|----|-------------------|-----------------------|--------------------------------|---------------------------------------------------------------|-------------------|-------------------|
| ID | Road              | Segment               | Land<br>Use<br>(dBA)           | 70<br>dBA<br>CNEL                                             | 65<br>dBA<br>CNEL | 60<br>dBA<br>CNEL |
| 1  | Lincoln Bl.       | n/o W. Washington Bl. | 63.8                           | RW                                                            | 121               | 260               |
| 2  | Lincoln Bl.       | s/o W. Washington Bl. | 64.8                           | RW                                                            | 143               | 307               |
| 3  | Lincoln Bl.       | n/o Jefferson Wy.     | 64.9                           | RW                                                            | 145               | 311               |
| 4  | Lincoln Bl.       | s/o Jefferson Wy.     | 64.9                           | RW                                                            | 144               | 311               |
| 5  | Lincoln Bl.       | n/o Maxella Av.       | 64.6                           | RW                                                            | 137               | 296               |
| 6  | Lincoln Bl.       | s/o Maxella Av.       | 65.2                           | 70                                                            | 150               | 324               |
| 7  | Lincoln Bl.       | s/o Marina Expy.      | 64.1                           | RW                                                            | 127               | 274               |
| 8  | W. Washington Bl. | w/o Lincoln Bl.       | 62.2                           | RW                                                            | 78                | 168               |
| 9  | W. Washington Bl. | e/o Lincoln Bl.       | 62.0                           | RW                                                            | 76                | 163               |
| 10 | Jefferson Wy.     | w/o Lincoln Bl.       | 51.4                           | RW                                                            | RW                | RW                |
| 11 | Maxella Av.       | e/o Lincoln Bl.       | 60.9                           | RW                                                            | 59                | 127               |
| 12 | Marina Expy.      | e/o Lincoln Bl.       | 64.0                           | RW                                                            | 97                | 210               |

TABLE 7-3: FUTURE WITHOUT PROJECT CONDITIONS NOISE CONTOURS

<sup>1</sup> "RW" = Location of the respective noise contour falls within the right-of-way of the road.

12185-04 Noise Study



|    |                   |                       | CNEL at<br>Nearest<br>Adjacent | Distance to Contour<br>from Centerline<br>(Feet) <sup>1</sup> |                   |                   |  |
|----|-------------------|-----------------------|--------------------------------|---------------------------------------------------------------|-------------------|-------------------|--|
| ID | Road              | Segment               | Land<br>Use<br>(dBA)           | 70<br>dBA<br>CNEL                                             | 65<br>dBA<br>CNEL | 60<br>dBA<br>CNEL |  |
| 1  | Lincoln Bl.       | n/o W. Washington Bl. | 63.8                           | RW                                                            | 121               | 260               |  |
| 2  | Lincoln Bl.       | s/o W. Washington Bl. | 64.9                           | RW                                                            | 143               | 308               |  |
| 3  | Lincoln Bl.       | n/o Jefferson Wy.     | 64.9                           | RW                                                            | 145               | 312               |  |
| 4  | Lincoln Bl.       | s/o Jefferson Wy.     | 64.9                           | RW                                                            | 145               | 311               |  |
| 5  | Lincoln Bl.       | n/o Maxella Av.       | 64.6                           | RW                                                            | 138               | 296               |  |
| 6  | Lincoln Bl.       | s/o Maxella Av.       | 65.2                           | 70                                                            | 151               | 325               |  |
| 7  | Lincoln Bl.       | s/o Marina Expy.      | 64.1                           | RW                                                            | 127               | 275               |  |
| 8  | W. Washington Bl. | w/o Lincoln Bl.       | 62.2                           | RW                                                            | 78                | 168               |  |
| 9  | W. Washington Bl. | e/o Lincoln Bl.       | 62.0                           | RW                                                            | 76                | 163               |  |
| 10 | Jefferson Wy.     | w/o Lincoln Bl.       | 51.7                           | RW                                                            | RW                | RW                |  |
| 11 | Maxella Av.       | e/o Lincoln Bl.       | 60.9                           | RW                                                            | 59                | 127               |  |
| 12 | Marina Expy.      | e/o Lincoln Bl.       | 64.0                           | RW                                                            | 98                | 211               |  |

TABLE 7-4: FUTURE WITH PROJECT CONDITIONS NOISE CONTOURS

<sup>1</sup> "RW" = Location of the respective noise contour falls within the right-of-way of the road.

### 7.2 EXISTING PLUS PROJECT BUILDOUT CONDITION PROJECT TRAFFIC NOISE LEVELS

An analysis of existing traffic noise levels plus traffic noise generated by the proposed Project (E+P) has been included in this report for information purposes. However, the analysis of existing traffic noise levels plus traffic noise generated by the proposed Project (E+P) scenario will not actually occur since the Project would not be fully constructed and operational until Future Year conditions.

Table 7-5 presents a comparison of the Existing without and with Project conditions CNEL noise levels. Table 7-1 presents the Existing without Project conditions noise level contours that are expected to range from 51.1 to 64.9 dBA CNEL. Table 7-2 shows the Existing with Project conditions noise level contours that are expected to range from 51.6 to 64.9 dBA CNEL. As shown on Table 7-5 the Project is expected to generate an exterior noise level increase under Existing with Project conditions ranging from 0.0 to 0.5 dBA CNEL at the roadway segments identified herein.



|    |                   |                       | CNEL at A     | se (dBA) <sup>1</sup> |                     |
|----|-------------------|-----------------------|---------------|-----------------------|---------------------|
| ID | Road              | Segment               | No<br>Project | With<br>Project       | Project<br>Addition |
| 1  | Lincoln Bl.       | n/o W. Washington Bl. | 63.5          | 63.5                  | 0.0                 |
| 2  | Lincoln Bl.       | s/o W. Washington Bl. | 64.6          | 64.6                  | 0.0                 |
| 3  | Lincoln Bl.       | n/o Jefferson Wy.     | 64.7          | 64.7                  | 0.0                 |
| 4  | Lincoln Bl.       | s/o Jefferson Wy.     | 64.7          | 64.7                  | 0.0                 |
| 5  | Lincoln Bl.       | n/o Maxella Av.       | 64.3          | 64.3                  | 0.0                 |
| 6  | Lincoln Bl.       | s/o Maxella Av.       | 64.9          | 64.9                  | 0.0                 |
| 7  | Lincoln Bl.       | s/o Marina Expy.      | 63.8          | 63.9                  | 0.1                 |
| 8  | W. Washington Bl. | w/o Lincoln Bl.       | 61.9          | 61.9                  | 0.0                 |
| 9  | W. Washington Bl. | e/o Lincoln Bl.       | 61.8          | 61.8                  | 0.0                 |
| 10 | Jefferson Wy.     | w/o Lincoln Bl.       | 51.1          | 51.6                  | 0.5                 |
| 11 | Maxella Av.       | e/o Lincoln Bl.       | 60.7          | 60.7                  | 0.0                 |
| 12 | Marina Expy.      | e/o Lincoln Bl.       | 63.7          | 63.7                  | 0.0                 |

TABLE 7-5: EXISTING CONDITION OFF-SITE PROJECT-RELATED TRAFFIC NOISE INCREASES

<sup>1</sup> The CNEL is calculated at the boundary of the right-of-way of each roadway and the property line of the nearest adjacent land use.

## 7.3 FUTURE PROJECT TRAFFIC NOISE LEVELS

Table 7-6 presents a comparison of the Future without and with Project conditions CNEL noise levels. Table 7-3 presents the Future without Project conditions noise level contours that are expected to range from 51.4 to 65.2 dBA CNEL. Table 7-4 shows the Future with Project conditions noise level contours that are expected to range from 51.7 to 65.2 dBA CNEL. As shown on Table 7-6 the Project is expected to generate an exterior noise level increase of up to 0.3 dBA CNEL, and will satisfy the significance thresholds identified in Section 4 on all roadway segments adjacent to noise-sensitive receiver locations. Therefore, the off-site Project-related traffic noise level increases are considered *less than significant* under Future conditions at the roadway segments identified herein.



| ID | Road              | Segment               | CN<br>La      | Threshold<br>Exceeded? <sup>2</sup> |                     |    |
|----|-------------------|-----------------------|---------------|-------------------------------------|---------------------|----|
|    |                   |                       | No<br>Project | With<br>Project                     | Project<br>Addition |    |
| 1  | Lincoln Bl.       | n/o W. Washington Bl. | 63.8          | 63.8                                | 0.0                 | No |
| 2  | Lincoln Bl.       | s/o W. Washington Bl. | 64.8          | 64.9                                | 0.1                 | No |
| 3  | Lincoln Bl.       | n/o Jefferson Wy.     | 64.9          | 64.9                                | 0.0                 | No |
| 4  | Lincoln Bl.       | s/o Jefferson Wy.     | 64.9          | 64.9                                | 0.0                 | No |
| 5  | Lincoln Bl.       | n/o Maxella Av.       | 64.6          | 64.6                                | 0.0                 | No |
| 6  | Lincoln Bl.       | s/o Maxella Av.       | 65.2          | 65.2                                | 0.0                 | No |
| 7  | Lincoln Bl.       | s/o Marina Expy.      | 64.1          | 64.1                                | 0.0                 | No |
| 8  | W. Washington Bl. | w/o Lincoln Bl.       | 62.2          | 62.2                                | 0.0                 | No |
| 9  | W. Washington Bl. | e/o Lincoln Bl.       | 62.0          | 62.0                                | 0.0                 | No |
| 10 | Jefferson Wy.     | w/o Lincoln Bl.       | 51.4          | 51.7                                | 0.3                 | No |
| 11 | Maxella Av.       | e/o Lincoln Bl.       | 60.9          | 60.9                                | 0.0                 | No |
| 12 | Marina Expy.      | e/o Lincoln Bl.       | 64.0          | 64.0                                | 0.0                 | No |

TABLE 7-6: FUTURE OFF-SITE PROJECT-RELATED TRAFFIC NOISE IMPACTS

<sup>1</sup>The CNEL is calculated at the boundary of the right-of-way of each roadway and the property line of the nearest adjacent land use.

<sup>2</sup> Significance Criteria (Section 4).

# 8 ON-SITE TRANSPORTATION NOISE IMPACTS

An on-site exterior transportation noise analysis has been completed to determine the potential noise exposure and to identify potential necessary noise attenuation measures for the proposed Thatcher Yard Residential Project. It is expected that the Project will not be exposed to a primary source of transportation noise impacts. The Project will, however, experience some background traffic noise impacts from adjacent local streets and the Los Angeles International Airport (LAX). However, due to the distance and intervening structures from these noise sources, transportation noise will not make a significant contribution to the noise environment at the Project site requiring detailed analysis, as previously discussed in Section 4.1.

#### INTERIOR NOISE PROJECT DESIGN FEATURES

With the interior Project Design Features provided in the Executive Summary, interior noise levels in residential units are expected to meet the City of Los Angeles 45 dBA CNEL interior noise level standards for residential development.



This page intentionally left blank



# 9 **RECEIVER LOCATIONS**

To assess the potential for long-term operational and short-term construction impacts, the following receiver locations as shown on Exhibit 9-A were identified as representative locations for analysis. The City of Los Angeles General Plan Noise Element defines noise-sensitive uses as: *single-family and multi-unit dwellings, long-term care facilities (including convalescent and retirement facilities), dormitories, motels, hotels, transient lodgings and other residential uses; houses of worship; hospitals; libraries; schools; auditoriums; concert halls; outdoor theaters; nature and wildlife preserves, and parks. Land uses that are considered relatively insensitive to noise include business, commercial, and professional developments. Land uses that are typically not affected by noise include: industrial, manufacturing, utilities, agriculture, natural open space, undeveloped land, parking lots, warehousing, liquid and solid waste facilities, salvage yards, and transit terminals.* 

Other sensitive land uses in the Project study area that are located at greater distances than those identified in this noise study will experience lower noise levels than those presented in this report due to the additional attenuation from distance and the shielding of intervening structures.

- R1: Located approximately 69 feet northwest of the Project site, R1 represents existing residential homes on the north side of Princeton Drive. A 24-hour noise level measurement was taken near this location, L1, to describe the existing ambient noise environment.
- R2: Location R2 represents the existing residential apartment building located approximately 73 feet northeast of the Project site on the east side of Thatcher Avenue. A 24-hour noise level measurement was taken near this location, L2, to describe the existing ambient noise environment.
- R3: Location R3 represents the existing residential apartment building located roughly 49 feet from the Project site boundary on the east side of Thatcher Avenue. The first-floor of this building is a parking garage, and as such, only second-floor receiver locations are analyzed in this noise study at R3. A 24-hour noise level measurement was taken near this location, L3, to describe the existing ambient noise environment.
- R4: Location R4 represents the existing residential apartment building located roughly 41 feet from the Project site boundary on the east side of Thatcher Avenue. The first-floor of this building is a parking garage, and as such, only second-floor receiver locations are analyzed in this noise study at R4. A 24-hour noise level measurement was taken near this location, L4, to describe the existing ambient noise environment.
- R5: Location R5 represents existing residential homes within a gated community located approximately 34 feet south of the Project site on Harbor Crossing Lane. A 24-hour noise level measurement was taken near this location, L4, to describe the existing ambient noise environment.
- R6: Location R6 represents the residential home and outdoor living area (backyard) located roughly 10 feet from the Project site boundary on the cul-de-sac of Oxford Avenue. A 24-hour noise level measurement was taken near this location, L5, to describe the existing ambient noise environment.

R7: Location R7 represents the existing residential homes located west of the Project site, at roughly 65 feet, on the west side of Oxford Avenue. A 24-hour noise level measurement was taken near this location, L5, to describe the existing ambient noise environment.



#### **EXHIBIT 9-A: RECEIVER LOCATIONS**

Distance from receiver to Project site boundary (in feet)



# **10 OPERATIONAL NOISE IMPACTS**

This section analyzes the potential stationary-source operational noise impacts due to the Project's stationary noise sources on the off-site sensitive receiver locations identified in Section 9. Exhibit 10-A identifies the noise source locations used to assess the Project-related operational noise levels.

## **10.1** OPERATIONAL NOISE SOURCES

Project-related stationary-source (operational) noise sources are expected to include: mechanical ventilation equipment, trash enclosure activity, a pad-mounted transformer, and playground/park activity. Further, the proposed residential land uses are considered noise-sensitive receiving land uses and are not expected to include any specific type of operational noise levels beyond the typical noise sources associated with existing residential land use in the Project study area.

## **10.2** REFERENCE NOISE LEVELS

To estimate the Project operational noise impacts, reference noise level measurements were collected from similar types of activities to represent the noise levels expected with the development of the proposed Project. Table 10-1 presents a summary of the reference noise level measurements used in this analysis to describe the Project operational noise levels.

| Noise Source                                  | Duration<br>(hh:mm:ss) | Dist.<br>From<br>Source | Noise<br>Source<br>Height | Reference Noise<br>Level (dBA L <sub>eq</sub> ) |              |
|-----------------------------------------------|------------------------|-------------------------|---------------------------|-------------------------------------------------|--------------|
|                                               |                        | (Feet)                  | (Feet)                    | @ Ref.<br>Dist.                                 | @ 50<br>Feet |
| Mechanical Ventilation Equipment <sup>1</sup> | 96:00:00               | 5'                      | 5'                        | 77.2                                            | 57.2         |
| Trash Enclosure Activity <sup>2</sup>         | 00:00:32               | 5'                      | 5'                        | 77.3                                            | 57.3         |
| Pad-Mounted Transformer <sup>3</sup>          | -                      | 6'                      | 5'                        | 56.0                                            | 37.6         |
| Playground/Park Activity <sup>4</sup>         | 00:15:00               | 5'                      | 4'                        | 63.4                                            | 43.4         |

TABLE 10-1: REFERENCE NOISE LEVEL MEASUREMENTS

<sup>1</sup> As measured by Urban Crossroads, Inc. on 7/27/2015 at the Santee Walmart located at 170 Town Center Parkway. <sup>2</sup> As measured by Urban Crossroads, Inc. on 5/3/2018 at a commercial and office park trash enclosure on the northeast

corner of Baker Street and Redhill Avenue in the City of Costa Mesa.

<sup>3</sup> Source: NEMA TR 1-2013 Transformers, Step Voltage Regulators and Reactors, Table 2 sound level for a 500 kVA transformer.

<sup>4</sup> As measured by Urban Crossroads, Inc. on 10/8/2014 at the Founder's Park in the community of Ladera Ranch.









## **10.2.1** MECHANICAL VENTILATION EQUIPMENT

At the time this noise study was prepared, the specific model specifications of the mechanical equipment to be used at the Project site was unknown. Therefore, to present a conservative approach, a reference noise level measurement of a commercial-sized air conditioning unit (roof-top) is used to represent worst-case conditions. The reference noise levels measurements were taken at the Santee Walmart on July 27<sup>th</sup>, 2015. Located at 170 Town Center Parkway in the City of Santee, the noise level measurements describe mechanical roof-top air conditioning units on the roof of an existing Walmart store. The reference noise level represents a Lennox SCA120 series 10-ton model packaged air conditioning unit. Using the uniform reference distance of 50 feet, the noise level is 57.2 dBA L<sub>eq</sub>. The operating conditions of the reference noise level measurement reflect peak summer cooling requirements with measured temperatures approaching 96 degrees Fahrenheit (°F) with average daytime temperatures of 82°F. The noise attenuation provided by a parapet wall is not reflected in this reference noise level measurement.

## **10.2.2** TRASH ENCLOSURE ACTIVITY

To describe the noise levels associated with a trash enclosure, Urban Crossroads collected a reference noise level measurement on May  $3^{rd}$ , 2018 at an existing commercial and office park trash enclosure within a parking lot on the northeast corner of Baker Street and Red Hill Avenue. The measured reference noise level at the uniform 50-foot reference distance is 57.3 dBA L<sub>eq</sub> for the trash enclosure activity. The trash enclosure activity noise levels include two metal gates opening and closing, the metal gates scraping against a concrete floor, dumpster movement on metal wheels, trash dropping into the metal dumpster, and background parking lot vehicle movements. Noise associated with trash enclosure activities is expected to occur for 60 minutes per hour to represent worst-case conditions.

## 10.2.3 PAD-MOUNTED TRANSFORMER

To determine the noise level impacts associated with a pad-mounted transformer within the Project site, the National Electrical Manufacturers Association (NEMA) *Transformers, Step Voltage Regulators and Reactors,* Table 2 sound level for a 500 kVA transformer is used in this analysis. (19) The reference NEMA noise level represents the factory tested noise level of the transformer. At the time of this analysis, the exact model of the Project's transformer was unknown, however, the reference noise levels are anticipated to likely overstate the potential noise levels from a residential transformer. Using the uniform reference distance of 50 feet, the reference NEMA transformer noise level is 37.6 dBA L<sub>eq</sub>. Noise associated with the transformer is expected during the typical daytime, and nighttime conditions for the entire hour (60 minutes).

## 10.2.4 PLAYGROUND/PARK ACTIVITY

To describe the potential noise level impacts associated with the Project's playground and park area activities, a reference noise level measurement was collected on Wednesday, October 8th, 2014 at the Founders Park in the unincorporated community of Ladera Ranch in the County of Orange. The reference noise level measurement includes playground activities, parents speaking



on cell phones, kids playing on swing sets, cheering, and clapping. Using a uniform reference distance of 50 feet, the noise level is  $43.4 \text{ dBA } L_{eq}$ .

### **10.3** OPERATIONAL NOISE LEVELS

Based upon the reference noise levels, it is possible to estimate the Project operational stationary-source noise levels at each of the nearby sensitive receiver locations. The operational noise level calculations shown on Table 10-2 account for the distance attenuation provided due to geometric spreading, when sound from a localized stationary source (i.e., a point source) propagates uniformly outward in a spherical pattern. With geometric spreading, sound levels attenuate (or decrease) at a rate of 6 dB for each doubling of distance from a point source. Table 10-2 indicates that the hourly noise levels associated with the mechanical ventilation equipment, trash enclosure activity, a pad-mounted transformer, and playground/park activity are expected to range from 32.8 to 55.3 dBA L<sub>eq</sub> at the nearby sensitive receiver locations. This analysis includes the attenuation provided by intervening structures, including existing and planned noise barriers and the Project buildings. Appendix 10.1 includes the Project operational noise level calculations.

|                                   |                                        | Unmitigated<br>Total Proiect |                            |                              |                                                                    |
|-----------------------------------|----------------------------------------|------------------------------|----------------------------|------------------------------|--------------------------------------------------------------------|
| Receiver<br>Location <sup>1</sup> | Mechanical<br>Ventilation<br>Equipment | Trash Enclosure<br>Activity  | Pad-Mounted<br>Transformer | Playground/<br>Park Activity | Operational<br>Noise Levels<br>(dBA L <sub>eq</sub> ) <sup>3</sup> |
| R1                                | 40.6                                   | 17.1                         | 0.0                        | 24.4                         | 40.7                                                               |
| R2                                | 48.3                                   | 20.0                         | 0.2                        | 14.7                         | 48.3                                                               |
| R3                                | 32.3                                   | 21.9                         | 2.0                        | 16.6                         | 32.8                                                               |
| R4                                | 23.9                                   | 55.3                         | 34.9                       | 7.9                          | 55.3                                                               |
| R5                                | 32.9                                   | 48.5                         | 28.5                       | 21.7                         | 48.7                                                               |
| R6                                | 34.7                                   | 26.3                         | 5.7                        | 17.3                         | 35.4                                                               |
| R7                                | 37.4                                   | 21.9                         | 1.1                        | 16.3                         | 37.6                                                               |

#### TABLE 10-2: OPERATIONAL NOISE LEVELS

<sup>1</sup> See Exhibit 10-A for the receiver and noise source locations.

<sup>2</sup> Reference noise sources as shown on Table 10-1.

<sup>3</sup> Calculations for each noise source are provided in Appendix 10.1.



## **10.4** PROJECT OPERATIONAL NOISE LEVEL COMPLIANCE

The City of Los Angeles Municipal Code has set exterior noise limits to control community noise impacts from non-transportation noise sources (such as air-conditioning units, refrigeration, heating, pumping, and filtering equipment). Section 112.02 indicates that stationary noise sources shall not operate in such a manner as to cause the noise level at any sensitive use to exceed the existing ambient noise level by 5 dBA. (14) Tables 10-3 and 10-4 show the Project-only operational noise levels, the closest ambient noise level measurement (see Section 5), and the adjusted operational noise level limits at each of the nearby sensitive receiver locations. Both the daytime and nighttime ambient noise levels are used to evaluate the potential Project-related operational noise levels, as shown on Tables 10-3 and 10-4, respectively.

Table 10-3 shows the daytime operational noise levels limits, per the City of Los Angeles Municipal Code, will range from 59.2 to 62.2 dBA  $L_{eq}$ , and the Project-only operational noise levels ranging from 32.8 to 55.3 dBA  $L_{eq}$  will satisfy the standards at each sensitive receiver location. Table 10-4 shows the nighttime operational noise levels limits, per the City of Los Angeles Municipal Code, will range from 54.3 to 57.3 dBA  $L_{eq}$ , and the Project-only operational noise levels ranging from 32.8 to 55.3 will satisfy the standards at each sensitive receiver location.

| Receiver<br>Location <sup>1</sup> | Total Project<br>Operational<br>Noise Level <sup>2</sup> | Measurement<br>Location <sup>3</sup> | Reference<br>Ambient<br>Noise Levels <sup>4</sup> | Ambient<br>Plus 5 dBA | Threshold⁵ | Threshold<br>Exceeded? <sup>6</sup> |
|-----------------------------------|----------------------------------------------------------|--------------------------------------|---------------------------------------------------|-----------------------|------------|-------------------------------------|
| R1                                | 40.7                                                     | L1                                   | 56.7                                              | +5                    | 61.7       | No                                  |
| R2                                | 48.3                                                     | L2                                   | 56.2                                              | +5                    | 61.2       | No                                  |
| R3                                | 32.8                                                     | L3                                   | 56.3                                              | +5                    | 61.3       | No                                  |
| R4                                | 55.3                                                     | L4                                   | 57.2                                              | +5                    | 62.2       | No                                  |
| R5                                | 48.7                                                     | L4                                   | 57.2                                              | +5                    | 62.2       | No                                  |
| R6                                | 35.4                                                     | L5                                   | 54.2                                              | +5                    | 59.2       | No                                  |
| R7                                | 37.6                                                     | L5                                   | 54.2                                              | +5                    | 59.2       | No                                  |

TABLE 10-3: DAYTIME OPERATIONAL NOISE LEVEL COMPLIANCE (DBA LEQ)

<sup>1</sup> See Exhibit 10-A for the sensitive receiver locations and noise source locations.

<sup>2</sup> Total Project operational noise levels as shown on Table 10-2.

<sup>3</sup> Reference noise level measurement locations as shown on Exhibit 5-A.

<sup>4</sup> Observed daytime ambient noise levels as shown on Table 5-1.

<sup>5</sup> Ambient plus 5 dBA per the Municipal Code Section 112.02(a).

<sup>6</sup> Do the Project operational noise levels exceed the ambient plus 5 dBA threshold identified by the City of Los Angeles?



| Receiver<br>Location <sup>1</sup> | Total Project<br>Operational<br>Noise Level <sup>2</sup> | Measurement<br>Location <sup>3</sup> | Reference<br>Ambient<br>Noise Levels <sup>4</sup> | Ambient<br>Plus 5 dBA | Threshold <sup>5</sup> | Threshold<br>Exceeded? <sup>6</sup> |
|-----------------------------------|----------------------------------------------------------|--------------------------------------|---------------------------------------------------|-----------------------|------------------------|-------------------------------------|
| R1                                | 40.7                                                     | L1                                   | 52.3                                              | +5                    | 57.3                   | No                                  |
| R2                                | 48.3                                                     | L2                                   | 49.6                                              | +5                    | 54.6                   | No                                  |
| R3                                | 32.8                                                     | L3                                   | 49.3                                              | +5                    | 54.3                   | No                                  |
| R4                                | 55.3                                                     | L4                                   | 51.0                                              | +5                    | 56.0                   | No                                  |
| R5                                | 48.7                                                     | L4                                   | 51.0                                              | +5                    | 56.0                   | No                                  |
| R6                                | 35.4                                                     | L5                                   | 51.3                                              | +5                    | 56.3                   | No                                  |
| R7                                | 37.6                                                     | L5                                   | 51.3                                              | +5                    | 56.3                   | No                                  |

TABLE 10-4: NIGHTTIME OPERATIONAL NOISE LEVEL COMPLIANCE (DBA LEQ)

<sup>1</sup> See Exhibit 10-A for the sensitive receiver locations and noise source locations.

<sup>2</sup> Total Project operational noise levels as shown on Table 10-2.

<sup>3</sup> Reference noise level measurement locations as shown on Exhibit 5-A.

<sup>4</sup> Observed nighttime ambient noise levels as shown on Table 5-1.

<sup>5</sup> Ambient plus 5 dBA per the Municipal Code Section 112.02(a).

<sup>6</sup> Do the Project operational noise levels exceed the ambient plus 5 dBA threshold identified by the City of Los Angeles?



# **11 CONSTRUCTION IMPACTS**

This section analyzes potential impacts resulting from the short-term construction activities associated with the development of the Project. Exhibit 11-A shows the construction activity boundaries in relation to the nearby sensitive receiver locations.

#### **11.1 CONSTRUCTION NOISE LEVELS**

Noise generated by the Project construction equipment will include a combination of trucks, power tools, concrete mixers and portable generators that when combined can reach high levels. The number and mix of construction equipment is expected to occur in the following stages:

- Demolition
- Site Preparation
- Grading
- Building Construction
- Paving
- Architectural Coating

This construction noise analysis was prepared using reference noise level measurements taken by Urban Crossroads, Inc. to describe the typical construction activity noise levels for each stage of Project construction. The construction reference noise level measurements represent a list of typical construction activity noise levels. Noise levels generated by heavy construction equipment can range from approximately 62 dBA to more than 80 dBA when measured at 50 feet. However, these noise levels diminish with distance from the construction site at a rate of 6 dBA per doubling of distance. For example, a noise level of 80 dBA measured at 50 feet from the noise source to the receiver would be reduced to 74 dBA at 100 feet from the source to the receiver, and would be further reduced to 68 dBA at 200 feet from the source to the receiver. The construction stages used in this analysis are consistent with the data used to support the construction emissions in the *Thatcher Yard Residential Air Quality Impact Analysis* prepared by Urban Crossroads Inc. (20)

### **11.2** CONSTRUCTION REFERENCE NOISE LEVELS

To describe the Project construction noise levels, measurements were collected for similar activities at several construction sites. Table 11-1 provides a summary of the reference construction noise level measurements. Since the reference noise levels were collected at varying distances, all construction noise level measurements presented on Table 11-1 have been adjusted to describe a common reference distance of 50 feet.





| ID | Noise Source                                                 | Reference<br>Distance<br>From<br>Source<br>(Feet) | Reference<br>Noise Levels<br>@ Reference<br>Distance<br>(dBA L <sub>eq</sub> ) | Reference<br>Noise Levels<br>@ 50 Feet<br>(dBA L <sub>eq</sub> ) <sup>6</sup> |
|----|--------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 1  | Truck Pass-Bys & Dozer Activity <sup>1</sup>                 | 30'                                               | 63.6                                                                           | 59.2                                                                          |
| 2  | Dozer Activity <sup>1</sup>                                  | 30'                                               | 68.6                                                                           | 64.2                                                                          |
| 3  | Construction Vehicle Maintenance Activities <sup>2</sup>     | 30'                                               | 71.9                                                                           | 67.5                                                                          |
| 4  | Foundation Trenching <sup>2</sup>                            | 30'                                               | 72.6                                                                           | 68.2                                                                          |
| 6  | Residential Framing <sup>3</sup>                             | 30'                                               | 66.7                                                                           | 62.3                                                                          |
| 7  | Concrete Paver Activities <sup>4</sup>                       | 30'                                               | 70.0                                                                           | 65.6                                                                          |
| 8  | Concrete Mixer Pour & Paving Activities <sup>4</sup>         | 30'                                               | 70.3                                                                           | 65.9                                                                          |
| 9  | Forklift, Jackhammer, & Metal Truck Bed Loading <sup>5</sup> | 50'                                               | 67.9                                                                           | 67.9                                                                          |

TABLE 11-1: CONSTRUCTION REFERENCE NOISE LEVELS

<sup>1</sup>As measured by Urban Crossroads, Inc. on 10/14/15 at a business park construction site located at the northwest corner of Barranca Parkway and Alton Parkway in the City of Irvine.

<sup>2</sup> As measured by Urban Crossroads, Inc. on 10/20/15 at a construction site located in Rancho Mission Viejo.

<sup>3</sup> As measured by Urban Crossroads, Inc. on 10/20/15 at a residential construction site located in Rancho Mission Viejo.

<sup>4</sup> Reference noise level measurements were collected from a nighttime concrete pour at an industrial construction site, located at 27334 San Bernardino Avenue in the City of Redlands, between 1:00 a.m. to 2:00 a.m. on 7/1/15.

<sup>5</sup> As measured by Urban Crossroads, Inc. on 9/9/16 during the demolition of an existing paved parking lot in Irvine.

<sup>6</sup>Reference noise levels are calculated at 50 feet using a drop off rate of 6 dBA per doubling of distance (point source).

#### **11.3 CONSTRUCTION NOISE ANALYSIS**

Tables 11-2 to 11-7 show the Project construction stages and the reference construction noise levels used for each stage. Table 11-8 provides a summary of the noise levels from each stage of construction at each of the sensitive receiver locations in the City of Los Angeles. Based on the reference construction noise levels, the Project-related construction noise levels when the highest reference noise level is operating at a single point nearest the sensitive receiver location will range from 53.6 to 72.9 dBA  $L_{eq}$  at the sensitive receiver locations in the City of Los Angeles. Exhibit 11-A shows the construction activity noise source location and the distance to each nearby sensitive receiver location.



| Reference Construction Activity <sup>1</sup>              | Reference Noise<br>Level @ 50 Feet<br>(dBA L <sub>eq</sub> ) |
|-----------------------------------------------------------|--------------------------------------------------------------|
| Truck Pass-Bys & Dozer Activity                           | 59.2                                                         |
| Dozer Activity                                            | 64.2                                                         |
| Forklift, Jackhammer, & Metal Truck Bed Activities        | 67.9                                                         |
| Highest Reference Noise Level at 50 Feet (dBA $L_{eq}$ ): | 67.9                                                         |

#### TABLE 11-2: DEMOLITION EQUIPMENT NOISE LEVELS

| Receiver<br>Location | Distance to<br>Construction<br>Activity<br>(Feet) <sup>2</sup> | Distance<br>Attenuation<br>(dBA L <sub>eq</sub> ) <sup>3</sup> | Estimated<br>Noise Barrier<br>Attenuation<br>(dBA L <sub>eq</sub> ) <sup>4</sup> | Construction<br>Noise Level<br>(dBA L <sub>eq</sub> ) |
|----------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------|
| R1                   | 76'                                                            | -3.6                                                           | -5.0                                                                             | 59.3                                                  |
| R2                   | 81'                                                            | -4.2                                                           | 0.0                                                                              | 63.7                                                  |
| R3                   | 62'                                                            | -1.9                                                           | 0.0                                                                              | 66.0                                                  |
| R4                   | 65'                                                            | -2.3                                                           | 0.0                                                                              | 65.6                                                  |
| R5                   | 51'                                                            | -0.2                                                           | -5.0                                                                             | 62.7                                                  |
| R6                   | 29'                                                            | 4.7                                                            | 0.0                                                                              | 72.6                                                  |
| R7                   | 79'                                                            | -4.0                                                           | 0.0                                                                              | 63.9                                                  |

<sup>1</sup> Reference construction noise level measurements taken by Urban Crossroads, Inc.

<sup>2</sup> Distance from the nearest point of construction activity to the nearest receiver.

<sup>3</sup> Point (stationary) source drop off rate of 6.0 dBA per doubling of distance.

| Reference Construction Activity <sup>1</sup>              | Reference Noise<br>Level @ 50 Feet<br>(dBA L <sub>eq</sub> ) |
|-----------------------------------------------------------|--------------------------------------------------------------|
| Truck Pass-Bys & Dozer Activity                           | 59.2                                                         |
| Dozer Activity                                            | 64.2                                                         |
| Highest Reference Noise Level at 50 Feet (dBA $L_{eq}$ ): | 64.2                                                         |

#### TABLE 11-3: SITE PREPARATION EQUIPMENT NOISE LEVELS

| Receiver<br>Location | Distance to<br>Construction<br>Activity<br>(Feet) <sup>2</sup> | Distance<br>Attenuation<br>(dBA L <sub>eq</sub> ) <sup>3</sup> | Estimated<br>Noise Barrier<br>Attenuation<br>(dBA L <sub>eq</sub> ) <sup>4</sup> | Construction<br>Noise Level<br>(dBA L <sub>eq</sub> ) |
|----------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------|
| R1                   | 76'                                                            | -3.6                                                           | -5.0                                                                             | 55.5                                                  |
| R2                   | 81'                                                            | -4.2                                                           | 0.0                                                                              | 60.0                                                  |
| R3                   | 62'                                                            | -1.9                                                           | 0.0                                                                              | 62.3                                                  |
| R4                   | 65'                                                            | -2.3                                                           | 0.0                                                                              | 61.9                                                  |
| R5                   | 51'                                                            | -0.2                                                           | -5.0                                                                             | 59.0                                                  |
| R6                   | 29'                                                            | 4.7                                                            | 0.0                                                                              | 68.9                                                  |
| R7                   | 79'                                                            | -4.0                                                           | 0.0                                                                              | 60.2                                                  |

<sup>1</sup> Reference construction noise level measurements taken by Urban Crossroads, Inc.

<sup>2</sup> Distance from the nearest point of construction activity to the nearest receiver.

<sup>3</sup> Point (stationary) source drop off rate of 6.0 dBA per doubling of distance.

| Reference Construction Activity <sup>1</sup>              | Reference Noise<br>Level @ 50 Feet<br>(dBA L <sub>eq</sub> ) |
|-----------------------------------------------------------|--------------------------------------------------------------|
| Truck Pass-Bys & Dozer Activity                           | 59.2                                                         |
| Dozer Activity                                            | 64.2                                                         |
| Highest Reference Noise Level at 50 Feet (dBA $L_{eq}$ ): | 64.2                                                         |

#### TABLE 11-4: GRADING EQUIPMENT NOISE LEVELS

| Receiver<br>Location | Distance to<br>Construction<br>Activity<br>(Feet) <sup>2</sup> | Distance<br>Attenuation<br>(dBA L <sub>eq</sub> ) <sup>3</sup> | Estimated<br>Noise Barrier<br>Attenuation<br>(dBA L <sub>eq</sub> ) <sup>4</sup> | Construction<br>Noise Level<br>(dBA L <sub>eq</sub> ) |
|----------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------|
| R1                   | 76'                                                            | -3.6                                                           | -5.0                                                                             | 55.5                                                  |
| R2                   | 81'                                                            | -4.2                                                           | 0.0                                                                              | 60.0                                                  |
| R3                   | 62'                                                            | -1.9                                                           | 0.0                                                                              | 62.3                                                  |
| R4                   | 65'                                                            | -2.3                                                           | 0.0                                                                              | 61.9                                                  |
| R5                   | 51'                                                            | -0.2                                                           | -5.0                                                                             | 59.0                                                  |
| R6                   | 29'                                                            | 4.7                                                            | 0.0                                                                              | 68.9                                                  |
| R7                   | 79'                                                            | -4.0                                                           | 0.0                                                                              | 60.2                                                  |

<sup>1</sup> Reference construction noise level measurements taken by Urban Crossroads, Inc.

<sup>2</sup> Distance from the nearest point of construction activity to the nearest receiver.

<sup>3</sup> Point (stationary) source drop off rate of 6.0 dBA per doubling of distance.

| Reference Construction Activity <sup>1</sup>        | Reference Noise<br>Level @ 50 Feet<br>(dBA L <sub>eq</sub> ) |
|-----------------------------------------------------|--------------------------------------------------------------|
| Construction Vehicle Maintenance Activities         | 67.5                                                         |
| Foundation Trenching                                | 68.2                                                         |
| Residential Framing                                 | 62.3                                                         |
| Highest Reference Noise Level at 50 Feet (dBA Leq): | 68.2                                                         |

#### TABLE 11-5: BUILDING CONSTRUCTION EQUIPMENT NOISE LEVELS

| Receiver<br>Location | Distance to<br>Construction<br>Activity<br>(Feet) <sup>2</sup> | Distance<br>Attenuation<br>(dBA L <sub>eq</sub> ) <sup>3</sup> | Estimated<br>Noise Barrier<br>Attenuation<br>(dBA L <sub>eq</sub> ) <sup>4</sup> | Construction<br>Noise Level<br>(dBA L <sub>eq</sub> ) |
|----------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------|
| R1                   | 76'                                                            | -3.6                                                           | -5.0                                                                             | 59.5                                                  |
| R2                   | 81'                                                            | -4.2                                                           | 0.0                                                                              | 64.0                                                  |
| R3                   | 62'                                                            | -1.9                                                           | 0.0                                                                              | 66.3                                                  |
| R4                   | 65'                                                            | -2.3                                                           | 0.0                                                                              | 65.9                                                  |
| R5                   | 51'                                                            | -0.2                                                           | -5.0                                                                             | 63.0                                                  |
| R6                   | 29'                                                            | 4.7                                                            | 0.0                                                                              | 72.9                                                  |
| R7                   | 79'                                                            | -4.0                                                           | 0.0                                                                              | 64.2                                                  |

<sup>1</sup> Reference construction noise level measurements taken by Urban Crossroads, Inc.

<sup>2</sup> Distance from the nearest point of construction activity to the nearest receiver.

<sup>3</sup> Point (stationary) source drop off rate of 6.0 dBA per doubling of distance.

| Reference Construction Activity <sup>1</sup>              | Reference Noise<br>Level @ 50 Feet<br>(dBA L <sub>eq</sub> ) |  |  |  |
|-----------------------------------------------------------|--------------------------------------------------------------|--|--|--|
| Concrete Paver Activities                                 | 65.6                                                         |  |  |  |
| Concrete Mixer Pour & Paving Activities                   | 65.9                                                         |  |  |  |
| Highest Reference Noise Level at 50 Feet (dBA $L_{eq}$ ): | 65.9                                                         |  |  |  |

#### TABLE 11-6: PAVING EQUIPMENT NOISE LEVELS

| Receiver<br>Location | Distance to<br>Construction<br>Activity<br>(Feet) <sup>2</sup> | Distance<br>Attenuation<br>(dBA L <sub>eq</sub> ) <sup>3</sup> | Estimated<br>Noise Barrier<br>Attenuation<br>(dBA L <sub>eq</sub> ) <sup>4</sup> | Construction<br>Noise Level<br>(dBA L <sub>eq</sub> ) |
|----------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------|
| R1                   | 76'                                                            | -3.6                                                           | -5.0                                                                             | 57.2                                                  |
| R2                   | 81'                                                            | -4.2                                                           | 0.0                                                                              | 61.7                                                  |
| R3                   | 62'                                                            | -1.9                                                           | 0.0                                                                              | 64.0                                                  |
| R4                   | 65'                                                            | -2.3                                                           | 0.0                                                                              | 63.6                                                  |
| R5                   | 51'                                                            | -0.2                                                           | -5.0                                                                             | 60.7                                                  |
| R6                   | 29'                                                            | 4.7                                                            | 0.0                                                                              | 70.6                                                  |
| R7                   | 79'                                                            | -4.0                                                           | 0.0                                                                              | 61.9                                                  |

<sup>1</sup> Reference construction noise level measurements taken by Urban Crossroads, Inc.

<sup>2</sup> Distance from the nearest point of construction activity to the nearest receiver.

<sup>3</sup> Point (stationary) source drop off rate of 6.0 dBA per doubling of distance.

| Reference Construction Activity <sup>1</sup>              | Reference Noise<br>Level @ 50 Feet<br>(dBA L <sub>eq</sub> ) |
|-----------------------------------------------------------|--------------------------------------------------------------|
| Residential Framing                                       | 62.3                                                         |
| Highest Reference Noise Level at 50 Feet (dBA $L_{eq}$ ): | 62.3                                                         |

#### TABLE 11-7: ARCHITECTURAL COATING EQUIPMENT NOISE LEVELS

| Receiver<br>Location | Distance to<br>Construction<br>Activity<br>(Feet) <sup>2</sup> | Distance<br>Attenuation<br>(dBA L <sub>eq</sub> ) <sup>3</sup> | Estimated<br>Noise Barrier<br>Attenuation<br>(dBA L <sub>eq</sub> ) <sup>4</sup> | Construction<br>Noise Level<br>(dBA L <sub>eq</sub> ) |
|----------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------|
| R1                   | 76'                                                            | -3.6                                                           | -5.0                                                                             | 53.6                                                  |
| R2                   | 81'                                                            | -4.2                                                           | 0.0                                                                              | 58.1                                                  |
| R3                   | 62'                                                            | -1.9                                                           | 0.0                                                                              | 60.4                                                  |
| R4                   | 65'                                                            | -2.3                                                           | 0.0                                                                              | 60.0                                                  |
| R5                   | 51'                                                            | -0.2                                                           | -5.0                                                                             | 57.1                                                  |
| R6                   | 29'                                                            | 4.7                                                            | 0.0                                                                              | 67.0                                                  |
| R7                   | 79'                                                            | -4.0                                                           | 0.0                                                                              | 58.3                                                  |

<sup>1</sup> Reference construction noise level measurements taken by Urban Crossroads, Inc.

<sup>2</sup> Distance from the nearest point of construction activity to the nearest receiver.

<sup>3</sup> Point (stationary) source drop off rate of 6.0 dBA per doubling of distance.





EXHIBIT 11-A: CONSTRUCTION NOISE SOURCE AND RECEIVER LOCATIONS



## 11.4 CONSTRUCTION NOISE LEVELS OF SIGNIFICANCE

The construction noise analysis shows that the highest construction noise levels will occur when construction activities take place at the edge of the Project site boundaries. As shown on Table 11-8, the unmitigated construction noise levels are expected to range from 53.6 to 72.9 dBA  $L_{eq}$  at the sensitive receiver locations in the City of Los Angeles. To control noise impacts associated with the construction of the proposed Project, the City of Los Angeles Municipal Code has established an exterior noise level standard of 75 dBA  $L_{eq}$ .

| Receiver<br>Location <sup>1</sup> | Construction Phase Hourly Noise Level (dBA Leq) |                     |         |                          |        |                          |                                      |  |
|-----------------------------------|-------------------------------------------------|---------------------|---------|--------------------------|--------|--------------------------|--------------------------------------|--|
|                                   | Demolition                                      | Site<br>Preparation | Grading | Building<br>Construction | Paving | Architectural<br>Coating | Highest<br>Noise Levels <sup>2</sup> |  |
| R1                                | 59.3                                            | 55.5                | 55.5    | 59.5                     | 57.2   | 53.6                     | 59.5                                 |  |
| R2                                | 63.7                                            | 60.0                | 60.0    | 64.0                     | 61.7   | 58.1                     | 64.0                                 |  |
| R3                                | 66.0                                            | 62.3                | 62.3    | 66.3                     | 64.0   | 60.4                     | 66.3                                 |  |
| R4                                | 65.6                                            | 61.9                | 61.9    | 65.9                     | 63.6   | 60.0                     | 65.9                                 |  |
| R5                                | 62.7                                            | 59.0                | 59.0    | 63.0                     | 60.7   | 57.1                     | 63.0                                 |  |
| R6                                | 72.6                                            | 68.9                | 68.9    | 72.9                     | 70.6   | 67.0                     | 72.9                                 |  |
| R7                                | 63.9                                            | 60.2                | 60.2    | 64.2                     | 61.9   | 58.3                     | 64.2                                 |  |

TABLE 11-8: UNMITIGATED CONSTRUCTION EQUIPMENT NOISE LEVEL SUMMARY (DBA LEQ)

<sup>1</sup>Noise receiver locations are shown on Exhibit 11-A.

<sup>2</sup> Estimated construction noise levels during peak operating conditions.

Based on the Project-related construction noise levels approaching 72.9 dBA L<sub>eq</sub>, the unmitigated noise levels satisfy the City of Los Angeles Municipal Code 75 dBA L<sub>eq</sub> exterior noise level standard for construction. Therefore, Project construction noise levels represent a *less than significant* noise impact at adjacent sensitive receiver locations, as shown on Table 11-9.



| Receiver Location <sup>1</sup> | Highest Project<br>Construction<br>Noise Level <sup>2</sup> | Threshold <sup>3</sup> | Threshold<br>Exceeded? <sup>4</sup> |
|--------------------------------|-------------------------------------------------------------|------------------------|-------------------------------------|
| R1                             | 59.5                                                        | 75                     | No                                  |
| R2                             | 64.0                                                        | 75                     | No                                  |
| R3                             | 66.3                                                        | 75                     | No                                  |
| R4                             | 65.9                                                        | 75                     | No                                  |
| R5                             | 63.0                                                        | 75                     | No                                  |
| R6                             | 72.9                                                        | 75                     | No                                  |
| R7                             | 64.2                                                        | 75                     | No                                  |

TABLE 11-9: UNMITIGATED CONSTRUCTION EQUIPMENT NOISE LEVEL COMPLIANCE (DBA LEQ)

<sup>1</sup> See Exhibit 11-A for the sensitive receiver locations.

<sup>2</sup> Peak Project construction noise levels as shown on Table 11-8.

<sup>3</sup> Source: City of Los Angeles Municipal Code, Section 112.05.

<sup>6</sup> Do the peak Project construction noise levels exceed the threshold identified by the City of Los Angeles?

## **11.5 CONSTRUCTION VIBRATION IMPACTS**

Construction activity can result in varying degrees of ground vibration, depending on the equipment and methods used, distance to the affected structures and soil type. The proposed Project's construction activities most likely to cause vibration impacts are:

- Heavy Construction Equipment: Although all heavy mobile construction equipment has the potential of causing at least some perceptible vibration while operating close to buildings, the vibration is usually short-term and is not of sufficient magnitude to cause building damage.
- Trucks: Trucks hauling building materials to construction sites can be sources of vibration intrusion if the haul routes pass through residential neighborhoods on streets with bumps or potholes. Repairing the bumps and potholes generally eliminates the problem.

Ground-borne vibration levels resulting from construction activities occurring within the Project site were estimated by data published by the Federal Transit Administration. Construction activities that would have the potential to generate low levels of ground-borne vibration within the Project site include grading. Using the vibration source level of construction equipment provided on Table 6-5 and the construction vibration assessment methodology published by the FTA, it is possible to estimate the Project vibration impacts. Table 11-10 presents the expected Project related vibration levels at each of the sensitive receiver locations.



Based on the reference vibration levels provided by the Federal Transit Administration, a large bulldozer represents the peak source of vibration with a reference velocity of 0.089 in/sec peak-particle-velocity (PPV) at 25 feet. At distances ranging from 29 to 81 feet from primary Project construction activities, construction vibration velocity levels are expected to range from 0.015 to 0.071 in/sec PPV, as shown on Table 11-10. Based on the Caltrans older residential building damage threshold of 0.3 in/sec PPV, the proposed Project construction activities would result in vibration levels which are anticipated to remain below the threshold for building damage, and therefore, represents a *less than significant* impact.



| Threshold<br>Exceeded? <sup>3</sup>     |                                          | oN    | oN    | oN    | oN    | οN    | οN    | No    |
|-----------------------------------------|------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| tion                                    | Peak Vibration<br>Levels                 | 0.017 | 0.015 | 0.023 | 0.021 | 0.031 | 0.071 | 0.016 |
| Resulting Vibrat<br>n/sec) <sup>2</sup> | Large<br>Bulldozer<br>(0.089)            | 0.017 | 0.015 | 0.023 | 0.021 | 0.031 | 0.071 | 0.016 |
| n Levels @ 25' &<br>iver Locations (i   | Loaded Trucks<br>(0.076)                 | 0.014 | 0.013 | 0.019 | 0.018 | 0.026 | 0.061 | 0.014 |
| rence Vibration<br>at Recei             | Jack-Hammer<br>(0.035)                   | 0.007 | 0.006 | 0.009 | 0.008 | 0.012 | 0.028 | 0.006 |
| Ref                                     | Small<br>Bulldozer<br>(0.003 in/sec)     | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.002 | 0.001 |
|                                         | Distance to<br>Const. Activity<br>(Feet) | .92   | 81'   | 62'   | 65'   | 51'   | -6Z   | -62   |
|                                         | Receiver <sup>1</sup>                    | R1    | R2    | R3    | R4    | R5    | RG    | R7    |

# TABLE 11-10: CONSTRUCTION EQUIPMENT VIBRATION LEVELS

<sup>1</sup> Receiver locations are shown on Exhibit 11-A.

<sup>2</sup> Based on the FTA's Vibration Source Levels of Construction Equipment previously shown on Table 6-5 at a reference distance of 25 feet. Calculated using the following equation per FTA guidance: PPVequip = PPVref x (25/D)^1.5

Where "PPVequip" = the vibration level at the receiver; "PPVref" = the reference vibration level at 25 feet; and "D" = the distance to each receiver location. <sup>3</sup> Does the peak vibration exceed the maximum acceptable vibration threshold?

This page intentionally left blank



## **12 REFERENCES**

- 1. State of California. California Environmental Quality Act, Appendix G. 2018.
- 2. Linscott, Law & Greenspan, Engineers. *Technical Memorandum Thatcher Yard Residential Project.* January 2019.
- 3. Harris, Cyril M. Noise Control in Buildings. s.l. : McGraw-Hill, Inc., 1994.
- 4. California Department of Transportation Environmental Program. *Technical Noise Supplement A Technical Supplement to the Traffic Noise Analysis Protocol.* Sacramento, CA : s.n., September 2013.
- 5. Environmental Protection Agency Office of Noise Abatement and Control. Information on Levels of Environmental Noise Requisite to Protect Public Health and Welfare with an Adequate Margin of Safety. March 1974. EPA/ONAC 550/9/74-004.
- 6. U.S. Department of Transportation, Federal Highway Administration, Office of Environment and Planning, Noise and Air Quality Branch. *Highway Traffic Noise Analysis and Abatement Policy and Guidance*. June, 1995.
- 7. U.S. Department of Transportation, Federal Highway Administration. *Highway Traffic Noise in the United States, Problem and Response.* April 2000. p. 3.
- 8. U.S. Environmental Protection Agency Office of Noise Abatement and Control. *Noise Effects Handbook-A Desk Reference to Health and Welfare Effects of Noise.* October 1979 (revised July 1981). EPA 550/9/82/106.
- 9. Occupational Safety and Health Administration. Standard 29 CRF, Part 1910.
- 10. Center for Disease Control and Prevention. About Hearing Loss. [Online] [Cited: 04 15, 2016.] http://www.cdc.gov/healthyschools/noise/signs.htm.
- 11. U.S. Department of Transportation, Federal Transit Administration. *Transit Noise and Vibration Impact Assessment*. May 2006. FTA-VA-90-1003-06.
- 12. Office of Planning and Research. State of California General Plan Guidlines. 2018.
- 13. City of Los Angeles. General Plan Noise Element. February 1999.
- 14. —. Municipal Code, Chapter XI Noise Regulation.
- 15. American National Standards Institute (ANSI). Specification for Sound Level Meters ANSI S1.4-2014/IEC 61672-1:2013.
- 16. U.S. Department of Transportation, Federal Highway Administration. FHWA Highway Traffic Noise Prediction Model. December 1978. FHWA-RD-77-108.
- 17. California Department of Transportation Environmental Program, Office of Environmental Engineering. Use of California Vehicle Noise Reference Energy Mean Emission Levels (Calveno REMELs) in FHWA Highway Traffic Noise Prediction. September 1995. TAN 95-03.
- 18. **California Department of Transportation.** *Traffic Noise Attenuation as a Function of Ground and Vegetation Final Report.* June 1995. FHWA/CA/TL-95/23.
- 19. National Electrical Manufacturers Association. TR 1-2013 Transformers, Step Voltage Regulators and Reactors. 2014.
- 20. Urban Crossroads, Inc. Thatcher Yard Residential Air Quality Impact Analysis. February 2019.




# **13 CERTIFICATION**

The contents of this noise study report represent an accurate depiction of the noise environment and impacts associated with the proposed Thatcher Yard Residential Project. The information contained in this noise study report is based on the best available data at the time of preparation. If you have any questions, please contact me directly at (949) 336-5979.

Bill Lawson, P.E., INCE Principal URBAN CROSSROADS, INC. 260 E. Baker Street, Suite 200 Costa Mesa, CA 92626 (949) 336-5979 <u>blawson@urbanxroads.com</u>



# EDUCATION

Master of Science in Civil and Environmental Engineering California Polytechnic State University, San Luis Obispo • December, 1993

Bachelor of Science in City and Regional Planning California Polytechnic State University, San Luis Obispo • June, 1992

## **PROFESSIONAL REGISTRATIONS**

PE – Registered Professional Traffic Engineer – TR 2537 • January, 2009 AICP – American Institute of Certified Planners – 013011 • June, 1997–January 1, 2012 PTP – Professional Transportation Planner • May, 2007 – May, 2013 INCE – Institute of Noise Control Engineering • March, 2004

## **PROFESSIONAL AFFILIATIONS**

ASA – Acoustical Society of America ITE – Institute of Transportation Engineers

## **PROFESSIONAL CERTIFICATIONS**

Certified Acoustical Consultant – County of Orange • February, 2011 FHWA-NHI-142051 Highway Traffic Noise Certificate of Training • February, 2013





APPENDIX 3.1:

CITY OF LOS ANGELES MUNICIPAL CODE





## CHAPTER XI NOISE REGULATION

(Added by Ord. No. 144,331, Eff. 3/2/73.)

Article

- 1 General Provisions
- 2 Special Noise Sources3 Sanitary Operations
- 4 Vehicles
- 5 Amplified Sounds
- 6 General Noise

## ARTICLE 1 GENERAL PROVISIONS

Section

- 111.00 Declaration of Policy.
- 111.01 Definitions.
- 111.02 Sound Level Measurement Procedure and Criteria.
- 111.03 Minimum Ambient Noise Level.
- 111.04 Violations: Additional Remedies, Injunctions.
- 111.05 Enforcement, Citations.

#### SEC. 111.00. DECLARA TION OF POLICY .

It is hereby declared to be the policy of the City to prohibit unnecessary, excessive and annoying noises from all sources subject to its police power. At certain levels noises are detrimental to the health and welfare of the citizenry and in the public interests shall be systematically proscribed.

#### SEC. 111.01. DEFINITIONS.

Unless the context otherwise clearly indicates, the words and phrases used in this chapter are defined as follows:

(a) "Ambient Noise" is the composite of noise from all sources near and far in a given environment, exclusive of occasional and transient intrusive noise sources and of the particular noise source or sources to be measured. Ambient noise shall be averaged over a period of at least 15 minutes at a location and time of day comparable to that during which the measurement is taken of the particular noise source being measured. (Amended by Ord. No. 156,363, Eff. 3/29/82.)

(b) "Commer cial Purpose" is the use, operation, or maintenance of any sound amplifying equipment for the purpose of advertising any business, goods, or services, or for the purpose of attracting the attention of the public to, advertising for, or soliciting patronage or customers to or for any performance, show, entertainment, exhibition, or event, or for the purpose of demonstrating such sound equipment. (Amended by Ord. No. 156,363, Eff. 3/29/82.)

(c) "Decibel" (dB) is a unit of level which denotes the ratio between two (2) quantities which are proportional to power; the number of decibels corresponding to the ratio of two (2) amounts of power is ten (10) times the logarithm to the base (10) of this ratio. (Amended by Ord. No. 156,363, Eff. 3/29/82.)

(d) "Emergency Work" is work made necessary to restore property to a safe condition following a public calamity or work required to protect persons or property from an imminent exposure to danger, or work by private or public utilities when restoring utility service. (Amended by Ord. No. 156,363, Eff. 3/29/82.)

(e) "Impulsive Sound " is sound of short duration, usually less than one second, with an abrupt onset and rapid decay. By way of example "impulsive sound" shall include, but shall not be limited to, explosions, musical base drum beats, or the discharge of firearms. (Amended by Ord. No. 156,363, Eff. 3/29/82.)

(f) "Motor Vehicle" includes, but shall not be limited to, automobiles, trucks, motorcycles, minibikes and go-carts. (Amended by Ord. No. 156,363, Eff. 3/29/82.)

(g) "Noncommer cial Purpose" is the use, operation, or maintenance of any sound equipment for other than a "commercial purpose". "Noncommercial purpose" shall mean and include, but shall not be limited to, philanthropic, political, patriotic, and charitable purposes. (Amended by Ord. No. 156,363, Eff. 3/29/82.)

(h) "Octave Band Noise Analyzer" is an instrument for measurement of sound levels in octave frequency bands which satisfies the pertinent requirements for Class II octave band analyzers of the American National Standard Specifications for Octave, Half-Octave, and Third-Octave Band Filters, S1.11-1966 or the most recent revision thereof. (Amended by Ord. No. 156,363, Eff. 3/29/82.)

(i) "Person" is a person, firm, association, co-partnership, joint venture, corporation, or any entity, private or public in nature. (Amended by Ord. No. 156,363, Eff. 3/29/82.)

(j) "Sound Amplifying Equipment" (Amended by Ord. No. 156,363, Eff. 3/29/82.) is any machine or device for the amplification of the human voice, music or any other sound, but shall not include:

1. Automobile radios, stereo players or television receivers when used and heard only by the occupants of the vehicle in which the same is installed.

2. Radio, stereo players, phonographs or television receivers used in any house or apartment within any residential zone or within 500 feet thereof.

3. Warning devices on emergency vehicles.

Print

4. Horns or other warning devices authorized by law on any vehicle when used for traffic purposes.

(k) "Sound Level" (Noise level) in decibels (dB) is the sound measured with the "A" weighting and slow responses by a sound level meter; except for impulsive or rapidly varying sounds, the fast response shall be used. (Amended by Ord. No. 156,363, Eff. 3/29/82.)

(1) "Sound Level Meter" is an instrument including a microphone, an amplifier, an output meter, and "A" frequency weighting network for the measurement of sound levels which satisfies the pertinent requirements for Type S2A meters in American Standard Specifications for sound level meters in S1.4-1971 or the most recent revision thereof. (Amended by Ord. No. 156,363, Eff. 3/29/82.)

(m) "Sound Truck" is any motor vehicle, or any other vehicle regardless of motive power, whether in motion or stationary, which carries, is equipped with, or which has mounted thereon, or attached thereto, any sound amplifying equipment. (Amended by Ord. No. 156,363, Eff. 3/29/82.)

(n) Supplementary Definitions of Technical Terms. Definitions of technical terms not defined herein shall be obtained from American Standard Acoustical Terminology S1-1-1971 or the most recent revision thereof. (Amended by Ord. No. 156,363, Eff. 3/29/82.)

SEC. 111.02. SOUND LEVEL MEASUREMENT PROCEDURE AND CRITERIA.

(Title amended by Ord. No. 156,363, Eff. 3/29/82.)

(a) (Amended by Ord. No. 156,363, Eff. 3/29/82.) Any sound level measurement made pursuant to the provisions of this chapter shall be measured with a sound level meter using the "A" weighting and response as indicated in Section 111.01(k) of this article.

Except when impractical, the microphone shall be located four to five feet above the ground and ten feet or more from the nearest reflective surface. However, in those cases where another elevation is deemed appropriated, the latter shall be utilized.

Interior sound level measurements shall be made at a point at least four feet from the wall, ceiling, or floor nearest the noise source.

Calibration of the sound level meter, utilizing an acoustic calibrator shall be performed immediately prior to recording any sound level data. The ambient noise level and the level of a particular noise being measured shall be the numerical average of noise measurements taken at a given location during a given time period.

(b) (Amended by Ord. No. 156,363, Eff. 3/29/82.) Where the sound alleged to be offending is of a type or character set forth below, the following values shall be added to the sound level measurement of the offending noise:

1. Except for noise emanating from any electrical transformer or gas metering and pressure control equipment existing and installed prior to the effective date of the ordinance enacting this chapter, any steady tone with audible fundamental frequency or overtones have 200 Hz +5

- 2. Repeated impulsive noise +5
- 3. Noise occurring more than 5 but less than 15 minutes in any period of 60 consecutive minutes between the hours of 7:00 a.m. and 10:00 p.m. of any day -5

4. Noise occurring five minutes or less in any period of 60 consecutive minutes, between the hours of 7:00 a.m. and 10:00 p.m. of any day -5 (Amended by Ord. No. 161,574, Eff. 9/8/86.)

(c) For those cases where an objectionable noise is clearly audible, but where the level of ambient noise does not permit direct quantative sound level "A" measurements of the objectionable noise, sound measurements may be performed utilizing an octave band sound analyzer to determine sound level "A" limits as indicated in the Table I below. This table is used to convert the sound pressure level meter readings in dB for each band to SPL in dB(A) for each band.

# TABLE I OCTAVE BAND NOISE VALUES CORRESPONDING T O SOUND LEVEL "A" V ALUES

| Sound<br>Level |      | Octave | Band So<br>Octav | ound Pr e<br>ve Band C | essur e Lev<br>Center Fr | vel, dB r e<br>equency | e .0002 dy<br>in Hz | me/cm <sup>2</sup> |      |
|----------------|------|--------|------------------|------------------------|--------------------------|------------------------|---------------------|--------------------|------|
| "A"            | 31.5 | 63     | 125              | 250                    | 500                      | 1000                   | 2000                | 4000               | 8000 |
| 35             | 58   | 50     | 42               | 35                     | 32                       | 29                     | 26                  | 23                 | 20   |
| 40             | 61   | 54     | 46               | 40                     | 37                       | 34                     | 31                  | 28                 | 25   |
| 45             | 64   | 58     | 51               | 45                     | 42                       | 39                     | 36                  | 33                 | 30   |
| 50             | 67   | 61     | 55               | 50                     | 47                       | 44                     | 41                  | 38                 | 35   |
| 55             | 70   | 64     | 60               | 55                     | 52                       | 49                     | 46                  | 43                 | 40   |
| 60             | 73   | 68     | 64               | 60                     | 57                       | 54                     | 51                  | 48                 | 45   |
| 65             | 76   | 72     | 68               | 65                     | 62                       | 59                     | 56                  | 53                 | 50   |
| 70             | 79   | 76     | 73               | 70                     | 67                       | 64                     | 61                  | 58                 | 55   |
| 75             | 84   | 81     | 78               | 75                     | 72                       | 69                     | 66                  | 63                 | 60   |

(d) For those cases where a sound level measurement has been made pursuant to the provisions of this chapter and two or more provisions of this chapter apply, the provision establishing the lower or lowest noise level, respectively, shall be used. (Added by Ord. No. 156,363, Eff. 3/29/82.)

SEC. 111.03. MINIMUM AMBIENT NOISE LEVEL.

(Amended by Ord. No. 156,363, Eff. 3/29/82.)

Where the ambient noise level is less than the presumed ambient noise level designated in this section, the presumed ambient noise level in this section shall be deemed to be the minimum ambient noise level for purposes of this chapter.

#### TABLE II SOUND LEVEL "A" DECIBELS

(In this chart, daytime levels are to be used from 7:00 a.m. to 10:00 p.m. and nighttime levels from 10:00 p.m. to 7:00 a.m.)

|                                                          | PRESUMED<br>NOISE LEV | AMBIENT<br>EL (dB(A)) |
|----------------------------------------------------------|-----------------------|-----------------------|
| ZONE                                                     | DAY                   | NIGHT                 |
| A1, A2, RA, RE, RS, RD, RW1, RW2, R1, R2, R3, R4, and R5 | 50                    | 40                    |
| P, PB, CR, C1, C1.5, C2, C4, C5, and CM                  | 60                    | 55                    |
| M1, MR1, and MR2                                         | 60                    | 55                    |
| M2 and M3                                                | 65                    | 65                    |

At the boundary line between two zones, the presumed ambient noise level of the quieter zone shall be used.

#### SEC. 111.04. VIOLATIONS: ADDITIONAL REMEDIES, INJUNCTIONS.

As an additional remedy, the operation or maintenance of any device, instrument, vehicle, or machinery in violation of any provision of this chapter, which operation or maintenance causes discomfort or annoyance to reasonable persons or which endangers the comfort, repose, health, or peace of residents in the area, shall be deemed and is declared to be a public nuisance and may be subject to abatement summarily by a restraining order or injunction issued by a court order of competent jurisdiction. (Amended by Ord. No. 156,363, Eff. 3/29/82.)

#### SEC. 111.05. ENFORCEMENT, CITATIONS.

(Added by Ord. No. 156,363, Eff. 3/29/82.)

(a) The Department of Building and Safety shall have the power and duty to enforce the following noise control provisions of this Code: Section 12.14A-6(h), Section 12.19A-4(b)(1), Section 112.02 and Section 112.04(c). (Amended by Ord. No. 172,086, Eff. 7/30/98.)

(b) The Police Department shall have the power and duty to enforce the following noise control provisions of this Code: Section 41.32, Section 41.40, Section 41.42, Section 41.44, Section 41.57, Section 63.51(m), Section 112.01, Section 112.05, Section 112.06, Section 113.01, Section 114.01 through Section 114.05, inclusive, Section 115.02, and Section 116.01. (Amended by Ord. No. 161,574, Eff. 9/8/86.)

(c) Any Building Mechanical Inspector assigned to noise enforcement inspection shall have the power, authority and immunity of a public officer and employee, as set forth in the Penal Code of the State of California, Section 836.5, to make arrests without a warrant whenever such employee has reasonable cause to believe that the person to be arrested has committed a misdemeanor in his presence which is a violation of any provision set forth in Section 111.05(a) of this chapter. The provisions of said Penal Code section regarding issuance of a written promise to appear shall be applicable to arrests authorized herein.

## ARTICLE 2 SPECIAL NOISE SOURCES

Section

- 112.01 Radios, Television Sets, and Similar Devices.
- 112.02 Air Conditioning, Refrigeration, Heating, Pumping, Filtering Equipment.
- 112.03 Construction Noise.
- 112.04 Powered Equipment Intended for Repetitive Use in Residential Areas and Other Machinery, Equipment, and Devices.
- 112.05 Maximum Noise Level of Powered Equipment or Powered Hand Tools.
- 112.06 Places of Public Entertainment.

#### SEC. 112.01. RADIOS, TELEVISION SETS, AND SIMILAR DEVICES.

(Amended by Ord. No. 156,363, Eff. 3/29/82.)

(a) It shall be unlawful for any person within any zone of the City to use or operate any radio, musical instrument, phonograph, television receiver, or other machine or device for the producing, reproducing or amplification of the human voice, music, or any other sound, in such a manner, as to disturb the peace, quiet, and comfort of neighbor occupants or any reasonable person residing or working in the area.

(b) Any noise level caused by such use or operation which is audible to the human ear at a distance in excess of 150 feet from the property line of the noise source, within any residential zone of the City or within 500 feet thereof, shall be a violation of the provisions of this section.

(c) Any noise level caused by such use or operation which exceeds the ambient noise level on the premises of any other occupied property, or if a condominium, apartment house, duplex, or attached business, within any adjoining unit, by more than five (5) decibels shall be a violation of the provisions of this section.

## SEC. 112.02. AIR CONDITIONING, REFRIGERA TION, HEA TING, PUMPING, FIL TERING EQUIPMENT .

(Amended by Ord. No. 156,363, Eff. 3/29/82.)

(a) It shall be unlawful for any person, within any zone of the city to operate any air conditioning, refrigeration or heating equipment for any residence or other structure or to operate any pumping, filtering or heating equipment for any pool or reservoir in such manner as to create any noise which would cause the noise level on the premises of any other occupied property or if a condominium, apartment house, duplex, or attached business, within any adjoining unit to exceed the ambient noise level by more than five (5) decibels

(b) This section shall not be applicable to emergency work as defined in Section 111.01(c) of this chapter, or to periodic maintenance or testing of such equipment reasonably necessary to maintain such equipment in good working order.

#### SEC. 112.03. CONSTRUCTION NOISE.

Noise due to construction or repair work shall be regulated as provided by Section 41.40 of this Code. (Amended by Ord. No. 161,574, Eff. 9/8/86.)

# SEC. 112.04. POWERED EQUIPMENT INTENDED FOR REPETITIVE USE IN RESIDENTIAL AREAS AND OTHER MACHINER Y, EQUIPMENT , AND DEVICES.

#### (Title and Section Amended by Ord. No. 161,574, Eff 9/8/86.)

(a) Between the hours of 10:00 p.m and. 7:00 a.m. of the following day, no person shall operate any lawn mower, backpack blower, lawn edger, riding tractor, or any other machinery, equipment, or other mechanical or electrical device, or any hand tool which creates a loud, raucous or impulsive sound, within any residential zone or within 500 feet of a residence.

(b) Except as to the equipment and operations specifically mentioned and related elsewhere in this Chapter or for emergency work as that term is defined in Section 111.01(d), and except as to aircraft, tow tractors, aircraft auxiliary power units, trains and motor vehicles in their respective operations governed by State or federal regulations, no person shall operate or cause to be operated any machinery, equipment, tools, or other mechanical or electrical device, or engage in any other activity in such manner as to create any noise which would cause the noise level on the premises of any other occupied property, or, if a condominium, apartment house, duplex, or attached business, within any adjoining unit, to exceed the ambient noise level by more than five (5) decibels.

(c) Notwithstanding the provisions of Subsection (a) above, no gas powered blower shall be used within 500 feet of a residence at anytime. Both the user of such a blower as well as the individual who contracted for the services of the user, if any, shall be subject to the requirements of and penalty provisions for this ordinance. Violation of the provisions of this subsection shall be punishable as an infraction in an amount not to exceed One Hundred Dollars (\$100.00), notwithstanding the graduated fines set forth in LAMC § 11.00(m). (Amended by Ord. No. 171,890, Eff. 2/13/98.)

# SEC. 112.05. MAXIMUM NOISE LEVEL OF POWERED EQUIPMENT OR POWERED HAND T OOLS. (Amended by Ord. No. 161,574, Eff. 9/8/86.)

Between the hours of 7:00 a.m. and 10:00 p.m., in any residential zone of the City or within 500 feet thereof, no person shall operate or cause to be operated any powered equipment or powered hand tool that produces a maximum noise level exceeding the following noise limits at a distance of 50 feet therefrom:

(a) 75dB(A) for construction, industrial, and agricultural machinery including crawler-tractors, dozers, rotary drills and augers, loaders, power shovels, cranes, derricks, motor graders, paving machines, off-highway trucks, ditchers, trenchers, compactors, scrapers, wagons, pavement breakers, compressors and pneumatic or other powered equipment;

(b) 75dB(A) for powered equipment of 20 HP or less intended for infrequent use in residential areas, including chain saws, log chippers and powered hand tools;

(c) 65dB(A) for powered equipment intended for repetitive use in residential areas, including lawn mowers, backpack blowers, small lawn and garden tools and riding tractors;

The noise limits for particular equipment listed above in (a), (b) and (c) shall be deemed to be superseded and replaced by noise limits for such equipment from and after their establishment by final regulations adopted by the Federal Environmental Protection Agency and published in the Federal Register.

Said noise limitations shall not apply where compliance therewith is technically infeasible. The burden of proving that compliance is technically infeasible shall be upon the person or persons charged with a violation of this section. Technical infeasibility shall mean that said noise limitations cannot be complied with despite the use of mufflers, shields, sound barriers and/or other noise reduction device or techniques during the operation of the equipment.

#### SEC. 112.06. PLACES OF PUBLIC ENTER TAINMENT.

It shall be unlawful for any person to operate, play, or to permit the operation or playing of any radio, television receiver, phonograph, musical instrument, sound amplifying equipment, or similar device which produces, reproduces, or amplifies sound in any place of public entertainment at a sound level greater than 95dB(A) at any point that is normally occupied by a customer, unless a conspicuous and legible sign is located outside such place, near each public entrance, stating:

#### "WARNING: SOUND LEVELS WITHIN MAY CAUSE HEARING IMPAIRMENT."

(Added by Ord. No. 156,363, Eff. 3/29/82.)

### ARTICLE 3 SANITARY OPERATION

Section

113.01 Rubbish and Garbage Collection and Disposal.

#### SEC. 113.01. RUBBISH AND GARBAGE COLLECTION AND DISPOSAL.

(Amended by Ord. No. 161,574, Eff. 9/8/86.)

It shall be unlawful for any person engaged in the business of collecting or disposing of rubbish or garbage to operate any refuse disposal truck, parking lot sweeper, or vacuum truck, or to collect, load, pick up, transfer, unload, dump, discard, sweep, vacuum, or dispose of any rubbish or garbage, as such terms are defined in Section 66.00 of this Code, within 200 feet of any residential building between the hours of 9:00 p.m. and 6:00 a.m. of the following day, unless a permit therefore has been duly obtained beforehand from the Board of Police Commissioners.

The standards which shall be considered in determining whether a permit shall be granted are the following:

- (a) Whether the work to be done is in the public interest, or
- (b) Whether the applicant would suffer hardship, injustice or delay if the permit were not granted, or
- (c) Whether fuel conservation would result if the permit were issued.

No permit shall be required to perform emergency work as defined in Sec. 111.01(c) of this chapter.

## ARTICLE 4 VEHICLES

Section

- 114.01 Vehicle Repairs.
- 114.02 Motor Driven Vehicles.
- 114.03 Vehicles Loading and Unloading.114.04 Audible Signaling Devices.
- 114.05 Audible Advertising Devices Commercial Food Vendors.
- 114.06 Vehicle Theft Alarm Systems.
- 114.07 Audible Status Indicator

#### SEC. 114.01. VEHICLE REP AIRS.

(Amended by Ord. No. 156,363, Eff. 3/29/82.)

It shall be unlawful for any person, within any residential property located within any residential zone of the City or within 500 feet thereof, to repair, rebuild, reconstruct or dismantle any motor vehicle between the hours of 8:00 p.m. of one day and 8:00 a.m. of the next day in such manner:

- (a) That a reasonable person residing in the area is caused discomfort or annoyance;
- (d) That such activity is audible to the human ear at a distance in excess of 150 feet from the property line of the noise source;

(c) As to create any noise which would cause the noise level on the premises of any occupied residential property, or if a condominium, apartment house or duplex, within any adjoining unit, to exceed the ambient noise level by more than five (5) decibels.

SEC. 114.02. MOT OR DRIVEN VEHICLES.

(Amended by Ord. No. 156,363, Eff. 3/29/82.)

(a) It shall be unlawful for any person to unreasonably operate any motor driven vehicle upon any property within the City or to unreasonably accelerate the engine of any vehicle, or unreasonably sound, blow or operate the horn or other warning device of such vehicle in such manner:

- 1. As to disturb the peace, quiet and comfort of any neighborhood or of any reasonable person residing in such area
- 2. That such activity is audible to the human ear at a distance in excess of 150 feet from the property line of the noise source;

3. As to create any noise which would cause the noise level on the premises of any occupied residential property, or if a condominium, apartment house or duplex, within any adjoining unit, to exceed the ambient noise level by more than five (5) decibels.

(b) This section shall not be applicable to any vehicle which is operated upon any public highway, street or right-of-way or to the operation of any off-highway vehicle to the extent it is regulated in the Vehicle Code.

#### SEC. 114.03. VEHICLES – LOADING AND UNLOADING.

#### (Amended by Ord. No. 166,514, Eff. 1/24/91.)

(a) It shall be unlawful for any person, between the hours of 10:00 p.m. and 7:00 a.m. of the following day, to load or unload any vehicle, or operate any dollies, carts, forklifts, or other wheeled equipment, which causes any impulsive sound, raucous or unnecessary noise within 200 feet of any residential building.

(b) Irrespective of the provisions of Subsection (a), loading or unloading of vehicles of the type of activity referred to in Subsection (a) may occur between the hours of 6:00 a.m. to 11:00 p.m. of the same day pursuant to a permit issued by the Department of Transportation in accordance with a business program as defined by said department. This permit program would be limited to the area bounded by Western Avenue, Santa Monica Freeway, Central Avenue, and the San Diego Freeway, within the limits of the City of Los Angeles. Such permits will not be issued to high-noise businesses such as trash pickup.

#### SEC. 114.04. AUDIBLE SIGNALING DEVICES.

(Added by Ord. No. 161,574, Eff. 9/8/86.)

It shall be unlawful for any person, within any residential zone of the City or within 500 feet thereof, to sound, blow, or operate any audible signaling device, including sequential airhorns or electronically operated vehicular loud speaker music devices, which can be heard for a distance greater than 200 feet for any purpose. Violation of this section shall constitute an infraction This section does not address horn or warning devices regulated in Article 1 of Chapter 5 of Division 12 of the Vehicle Code of the State of California, commencing at Section 27000. (Last sentence amended by Ord. No. 165.191, Eff. 10/23/89.)

### SEC. 114.05. AUDIBLE ADVER TISING DEVICES – COMMERCIAL FOOD VENDORS.

(Added by Ord. No. 164,532, Eff. 4/20/89.)

Notwithstanding the provisions of Section 114.04, it shall be unlawful for any person, to sound, blow or operate any music, chimes or bells, or any similar sound device, amplified or otherwise, within 200 feet of any residential building between the hours of 9:00 p.m. and 7:00 a.m. the next day while operating a catering truck, as that term is defined in Section 80.73 of the Municipal Code.

### SEC. 114.06. VEHICLE THEFT ALARM SYSTEMS.

(Former Sec. 1 14.05, Renumber ed by Ord. No. 164,532, Eff. 4/20/89.)

It shall be unlawful for any person to install, operate or use any vehicle theft alarm system that emits or causes the emission of an audible sound, which is not, or does not become, automatically and completely silenced within five minutes. The time period shall be calculated based upon the emission of the first audible sound and shall end five minutes thereafter notwithstanding any variation or stoppage in the emissions of audible sound. Violation of this section shall constitute an infraction.

It shall be unlawful for any person to install, operate, use or maintain any vehicle theft alarm system which utilizes an audible status indicator emitting or causing the emission of an audible sound for a duration of more than one minute. The time period shall be calculated from the point in time of the emission of the first audible sound used in calculation and shall end one minute thereafter, notwithstanding any variation or temporary stoppage in the emission of audible sound.

As used in this section, an audible status indicator is a component of a vehicle theft alarm system which emits sound audible outside the vehicle for the purpose of warning that a vehicle theft alarm system is installed and armed or operational. The term "audible status indicator" shall include any device which emits a chirp, voice message or other sound when an approaching person is within a certain distance of the vehicle in which the device is installed.

In the event enforcement of a violation occurs under this section, no enforcement shall be taken under Section 80.75.1 of the Municipal Code for the same violation.

Violation of any provision of this section shall constitute an infraction.

## ARTICLE 5 AMPLIFIED SOUND

Section 115.01 Purpose. 115.02 Prohibition and Regulations.

#### SEC. 115.01. PURPOSE.

The Council enacts this legislation for the sole purpose of securing and promoting the public health, comfort, safety, and welfare of its citizenry. While recognizing that certain uses of sound amplifying equipment are protected by the constitutional rights of freedom of speech and assembly, the Council nevertheless feels obligated to reasonably regulate the use of sound amplifying equipment in order to protect the correlative constitutional rights of the citizens of this community to privacy and freedom from public nuisance of loud and unnecessary noise.

#### SEC. 115.02. PROHIBITION AND REGULA TIONS.

It shall be unlawful for any person, other than personnel of law enforcement or governmental agencies, or permittees duly authorized to use the same pursuant to Sec. 103.111 of this Code, to install, use, or operate within the City a loudspeaker or sound amplifying equipment in a fixed or movable position or mounted upon any sound truck for the purposes of giving instructions, directions, talks, addresses, lectures, or transmitting music to any persons or assemblages of persons in or upon any public street, alley, sidewalk, park or place, or other public property except when installed, used or operated in compliance with the following provisions:

(a) In all residential zones and within 500 feet thereof, no sound amplifying equipment shall be installed, operated or used for commercial purposes at any time.

(b) The operation or use of sound amplifying equipment for noncommercial purposes in all residential zones and within 500 feet thereof, except when used for regularly scheduled operative functions by any school or for the usual and customary purposes of any church, is prohibited between the hours of 4:30 p.m. and 9:00 a.m. of the following day.

(c) In all other zones, except such portions thereof as may be included within 500 feet of any residential zone, the operation or use of sound amplifying equipment for commercial purposes is prohibited between the hours of 9:00 p.m. and 8:00 a.m. of the following day.

(d) In all other zones, except such portions thereof as may be included within 500 feet of any residential zone, the operation or use of sound amplifying equipment for noncommercial purposes is prohibited between the hours of 10:00 p.m. and 7:00 a.m. of the following day.

- (e) The only sounds permitted shall be either music, human speech, or both.
- (f) Sound emanating from sound amplifying equipment shall be limited in volume, tone and intensity as follows:
  - 1. The sound shall not be audible at a distance in excess of 200 feet from the sound equipment.

2. In no event shall the sound be loud and raucous or unreasonably jarring, disturbing, annoying or a nuisance to reasonable persons of normal sensitiveness within the area of audibility.

(g) Except as provided in (b) above, no sound amplifying equipment shall be operated upon any property adjacent to and within 200 feet of any hospital grounds or any school or church building while in use.

(h) (Amended by Ord. No. 145,691, Eff. 5/2/74.) The operation or use of any sound amplifying equipment installed, mounted, attached or carried in or by any sound truck is further prohibited:

- 1. Within the Central Traffic district at any time;
- 2. Upon Hollywood Boulevard between Vermont Avenue and La Brea at any time;
- 3. Upon Wilshire Boulevard at any time;
- 4. Upon Sunset Boulevard at any time;
- 5. Upon Vine Street at any time;
- 6. Upon any street between the hours of 4:30 p.m. and 9:00 a.m. of the following day;
- 7. Upon any street on any Sunday.

## ARTICLE 6 GENERAL NOISE

Section

116.01 Loud, Unnecessary and Unusual Noise.

#### SEC. 116.01. LOUD, UNNECESSAR Y AND UNUSUAL NOISE.

Notwithstanding any other provisions of this chapter and in addition thereto, it shall be unlawful for any person to willfully make or continue, or cause to be made or continued, any loud, unnecessary, and unusual noise which disturbs the peace or quiet of any neighborhood or which causes discomfort or annoyance to any reasonable person of normal sensitiveness residing in the area. The standard which may be considered in determining whether a violation of the provisions of this section exists may include, but not be limited to, the following:

- (a) The level of noise;
- (b) Whether the nature of the noise is usual or unusual;
- (c) Whether the origin of the noise is natural or unnatural;
- (d) The level and intensity of the background noise, if any;
- (e) The proximity of the noise to residential sleeping facilities;
- (f) The nature and zoning of the area within which the noise emanates;
- (g) The density of the inhabitation of the area within which the noise emanates;
- (h) The time of the day and night the noise occurs;
- (i) The duration of the noise;
- (j) Whether the noise is recurrent, intermittent, or constant; and
- (k) Whether the noise is produced by a commercial or noncommercial activity.



APPENDIX 5.1:

**STUDY AREA PHOTOS** 







L1 East 33, 59' 8.950000", 118, 26' 53.340000"



L1 North 33, 59' 8.980000", 118, 26' 53.370000"



33, 59' 8.940000", 118, 26' 53.370000"



L1 West 33, 59' 8.830000", 118, 26' 53.370000"



L2 East 33, 59' 8.540000", 118, 26' 51.500000"



L2 North 33, 59' 8.570000", 118, 26' 51.530000"



L2 South 33, 59' 8.500000", 118, 26' 51.500000"



L2 West 33, 59' 8.570000", 118, 26' 51.560000"



L3 East 33, 59' 5.760000", 118, 26' 49.170000"



L3 North 33, 59' 5.730000", 118, 26' 49.000000"



L3 South 33, 59' 5.710000", 118, 26' 49.000000"



L3 Southeast 33, 59' 5.700000", 118, 26' 49.060000"



L3 West 33, 59' 5.800000", 118, 26' 48.920000"



L4 East 33, 59' 4.440000", 118, 26' 47.220000"



L4 North 33, 59' 4.400000", 118, 26' 47.460000"



L4 Northeast 33, 59' 4.420000", 118, 26' 47.220000"



L4 South 33, 59' 4.520000", 118, 26' 47.160000"



L4 West 33, 59' 4.410000", 118, 26' 47.380000"

## 82

L6 North 33, 59' 7.920000", 118, 26' 54.110000"

L5 South

33, 59' 6.550000", 118, 26' 53.200000"

L5 West

33, 59' 6.570000", 118, 26' 53.230000"

1014

33, 59' 6.570000", 118, 26' 53.200000"

JN:12185 Study Area Photos



33, 59' 7.910000", 118, 26' 54.030000"









L6 South 33, 59' 7.880000", 118, 26' 54.000000"



L6 West 33, 59' 7.900000", 118, 26' 54.110000"



APPENDIX 5.2:

**NOISE LEVEL MEASUREMENT WORKSHEETS** 





| Date:<br>Project:    | Tuesday, Jar<br>3233 Thatch | nuary 08, 201<br>ier Avenue Ve | 9<br>anice       |                  | Location:    | L1 - Locate<br>of the Proji<br>homes. | d on Princeto<br>ect site and e | on Drive nea<br>:xisting single | r the north∈<br>e-family res | ern boundar<br>idential | y Mete | rr: Piccolo I |              |              | JN:<br>Analyst:    | 12185<br>R. Saber    |
|----------------------|-----------------------------|--------------------------------|------------------|------------------|--------------|---------------------------------------|---------------------------------|---------------------------------|------------------------------|-------------------------|--------|---------------|--------------|--------------|--------------------|----------------------|
|                      |                             |                                |                  |                  |              |                                       | Hourly L <sub>eq</sub>          | dBA Reading                     | s (unadjuste                 | d)                      |        |               |              |              |                    |                      |
| 85.0                 |                             |                                |                  |                  |              |                                       |                                 |                                 |                              |                         |        |               |              |              |                    |                      |
| <b>A8A</b> )<br>75.0 |                             |                                |                  |                  |              |                                       |                                 |                                 |                              |                         |        |               |              |              |                    |                      |
| Lef 65.0             |                             |                                |                  |                  |              |                                       |                                 |                                 |                              |                         |        |               |              |              |                    |                      |
| <b>rly l</b>         |                             |                                |                  |                  |              | <b>S</b> .                            | 2                               | 8.9                             |                              | 9.0                     | 8      | 8             |              |              |                    |                      |
| <b>Hou</b><br>45.0   | 25.1                        | 4.9.9                          | 0.02             | 2:85<br>6:05     | :'SS         |                                       |                                 | BS<br>   <br>   <br>            | 5 <b>.</b> 42                | 0.42<br>0.420           | 222°   |               | 2.2.2        | 25.9         | 25.5<br>2.5<br>2.5 | 25°2                 |
| 35.0                 | 0                           | 1 2                            | -<br>-           | 4<br>5           | 9            | 7 8                                   | -<br>б                          | 10 11                           | 12                           | 13 14                   | 15     | 16 17         | 19           | 9 20         | 21 22              | 23                   |
|                      |                             |                                |                  |                  |              |                                       |                                 | Hour B                          | seginning                    |                         |        |               |              |              |                    | 1                    |
| Timeframe            | Hour                        | L eq                           | L <sub>max</sub> | L <sub>min</sub> | L1%          | 12%                                   | <b>L5%</b>                      | <i>87</i> %                     | L25%                         | 150%                    | %067   | <i>1</i> 95%  | %661         | L eq         | Adj.               | Adj. L <sub>eq</sub> |
|                      | 0                           | 52.1                           | 63.4             | 47.6             | 58.0         | 57.0                                  | 55.0                            | 54.0                            | 52.0                         | 50.0                    | 48.0   | 48.0          | 48.0         | 52.1         | 10.0               | 62.1                 |
|                      | 1                           | 49.9                           | 61.8             | 46.8             | 56.0         | 54.0                                  | 53.0                            | 52.0                            | 49.0                         | 48.0                    | 48.0   | 47.0          | 47.0         | 49.9         | 10.0               | 59.9                 |
| -                    | 2                           | 48.8                           | 63.1             | 46.5             | 55.0         | 52.0                                  | 50.0                            | 49.0                            | 48.0                         | 48.0                    | 47.0   | 47.0          | 47.0         | 48.8         | 10.0               | 58.8                 |
| Night                | ŝ                           | 50.0                           | 67.8<br>52 5     | 46.9             | 59.0         | 53.0                                  | 51.0                            | 50.0                            | 49.0                         | 48.0                    | 47.0   | 47.0          | 47.0         | 50.0         | 10.0               | 60.0                 |
|                      | 4 u                         | 50.9<br>53 7                   | 67.5<br>71.0     | 47.4             | 58.0         | 55.0<br>60.0                          | 52.0                            | 51.0                            | 50.0                         | 49.0<br>52.0            | 48.0   | 48.0          | 47.0         | 50.9         | 10.0               | 60.9<br>63 7         |
|                      | c 9                         | 55.7                           | 67.7             | 40.7<br>50.8     | 02.0<br>63.0 | 61.0                                  | 58.0                            | 57.0                            | 55.0                         | 54.0                    | 52.0   | 52.0          | 51.0         | 55.7         | 10.0               | 65.7                 |
|                      | 7                           | 57.5                           | 71.7             | 53.8             | 64.0         | 62.0                                  | 60.0                            | 59.0                            | 57.0                         | 56.0                    | 55.0   | 54.0          | 54.0         | 57.5         | 0.0                | 57.5                 |
|                      | 8                           | 58.2                           | 75.2             | 52.7             | 66.0         | 64.0                                  | 62.0                            | 60.0                            | 57.0                         | 56.0                    | 54.0   | 54.0          | 53.0         | 58.2         | 0.0                | 58.2                 |
|                      | б;                          | 57.2                           | 73.4             | 50.8             | 65.0         | 63.0                                  | 61.0                            | 59.0                            | 57.0                         | 55.0                    | 53.0   | 52.0          | 51.0         | 57.2         | 0.0                | 57.2<br>2            |
|                      | 10                          | 57.8                           | 75.5             | 50.2<br>40.6     | 63.0<br>CE 0 | 62.0                                  | 60.0                            | 60.0                            | 29.0<br>E0.0                 | 55.0                    | 51.0   | 51.0          | 51.0         | 57.8         | 0.0                | 57.8<br>59.0         |
| ſ                    | 12                          | 54.9                           | 02.0<br>76.7     | 49.6<br>49.6     | 0.co<br>63.0 | 0.5.0<br>62.0                         | 0.10<br>59.0                    | 57.0                            | 53.0                         | 52.0                    | 50.0   | 20.0          | 50.0         | 54.9         | 0.0                | 54.9                 |
| Day                  | 13                          | 54.0                           | 68.4             | 49.9             | 60.0         | 58.0                                  | 57.0                            | 56.0                            | 54.0                         | 52.0                    | 51.0   | 51.0          | 50.0         | 54.0         | 0.0                | 54.0                 |
|                      | 14                          | 60.6                           | 84.4             | 51.0             | 69.0         | 66.0                                  | 62.0                            | 59.0                            | 56.0                         | 54.0                    | 52.0   | 51.0          | 51.0         | 60.6         | 0.0                | 60.6                 |
|                      | 15                          | 55.8                           | 71.3             | 51.5             | 64.0         | 62.0                                  | 59.0                            | 58.0                            | 55.0                         | 54.0                    | 52.0   | 52.0          | 52.0         | 55.8         | 0.0                | 55.8                 |
|                      | 16                          | 57.5<br>rr o                   | 80.6             | 51.2             | 66.0<br>5    | 64.0                                  | 60.0                            | 59.0                            | 56.0                         | 54.0                    | 52.0   | 52.0          | 51.0         | 57.5         | 0.0                | 57.5<br>57.6         |
|                      | 1/<br>18                    | 54.3                           | 72.2             | 49.5             | 63.U<br>61.0 | 0.1.0<br>59.0                         | 57.0                            | 56.0                            | 54.0                         | 54.0<br>52.0            | 51.0   | 50.0          | 50.0<br>50.0 | 54.3         | 0.0                | 52.8<br>54.3         |
|                      | 19                          | 53.2                           | 68.8             | 49.0             | 61.0         | 60.0                                  | 56.0                            | 55.0                            | 52.0                         | 51.0                    | 50.0   | 50.0          | 49.0         | 53.2         | 5.0                | 58.2                 |
| Evening              | 20                          | 52.9                           | 65.8             | 48.9             | 58.0         | 56.0                                  | 55.0                            | 54.0                            | 53.0                         | 51.0                    | 50.0   | 50.0          | 49.0         | 52.9         | 5.0                | 57.9                 |
|                      | 21<br>77                    | 53.7<br>E2 E                   | 69.0<br>63.0     | 48.8             | 63.0<br>E0.0 | 60.0                                  | 56.0<br>EE 0                    | 55.0                            | 52.0                         | 51.0                    | 20.0   | 49.0          | 49.0         | 53.7<br>E2 E | 5.0                | 58.7<br>62 E         |
| Night                | 22<br>23                    | c.2c<br>۲.C                    | 6.c0<br>64.7     | 49.0             | 0.60         | 0.02                                  | 0.00                            | 0.4.0<br>55.0                   | 0.22<br>52 D                 | 0.10                    | 0.05   | 49.0          | 49.0<br>49.0 | c.2c<br>۲ ر  | 10.0               | 2.20<br>ركم          |
| Timeframe            | Hour                        | L eq                           | L <sub>max</sub> | L <sub>min</sub> | 11%          | L2%                                   | L5%                             | 78%                             | L25%                         | L50%                    | %067   | <i>195%</i>   | %667         |              | L ed (dBA)         | 0=10                 |
| Dav                  | Min                         | 54.0                           | 68.4             | 49.5             | 60.0         | 58.0                                  | 57.0                            | 56.0                            | 53.0                         | 52.0                    | 50.0   | 50.0          | 50.0         | 74-Hour      | Davtime            | Nichttime            |
|                      | Max                         | 60.6<br>                       | 84.4             | 53.8             | 69.0         | 66.0                                  | 62.0                            | 60.0                            | 59.0                         | 57.0                    | 55.0   | 54.0          | 54.0         |              |                    |                      |
| Energy /             | Average                     | 57.3                           | AVEI             | age:             | 64.1<br>-2 2 | 62.2                                  | 59.8                            | 58.4                            | 56.0                         | 54.3                    | 52.0   | 51.7          | 51.2         |              | 56,7               | С<br>С<br>С          |
| Evening              | Min                         | 52.9<br>53.7                   | 65.8<br>69.0     | 48.8<br>49.0     | 58.0<br>63.0 | 56.0<br>60.0                          | 55.0                            | 55.0                            | 52.0                         | 51.0                    | 50.0   | 50.0<br>50.0  | 49.0         | 70           | EHour ONEL         | (BA)                 |
| Energy A             | Average                     | 53.3                           | Aver             | age:             | 60.7         | 58.7                                  | 55.7                            | 54.7                            | 52.3                         | 51.0                    | 50.0   | 49.7          | 49.0         |              |                    |                      |
| Night                | Min                         | 48.8                           | 61.8             | 46.5             | 55.0         | 52.0                                  | 50.0                            | 49.0                            | 48.0                         | 48.0                    | 47.0   | 47.0          | 47.0         | _            | <b>р</b><br>Д      |                      |
| Enormy               | Max                         | 7.55./<br>5.7.7                | /1.0             | 50.8             | 63.U         | 61.0                                  | 58.0                            | 5/.0                            | 55.0                         | 54.0                    | 52.0   | 52.0          | 51.0         |              |                    |                      |
| LIICI BY A           |                             | C.2C                           |                  | age.             | 1.00         | 0.00                                  | 14.T                            | 0.00                            | TTC                          | T.0C                    | 40.0   | 40.0          | 40.2         |              |                    |                      |

U:\Uclobs\\_12100-12500\\_12100\12185\Fieldwork\12185\_L1\_Summary

87

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date:<br>Project:                                      | Tuesday, Ja<br>3233 Thatch | nuary 08, 201<br>her Avenue Vi         | l9<br>enice  |                                        | Location          | L2 - Locate<br>of the Proje | d on Thatche<br>ect site and N | r Avenue ne<br>Airabella Apa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ar the easter<br>irtment Hor | rn boundary<br>nes. | Meter:         | Piccolo I      |                               |                | JN:<br>Analyst:       | 12185<br>R. Saber    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------|----------------------------------------|--------------|----------------------------------------|-------------------|-----------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------|----------------|----------------|-------------------------------|----------------|-----------------------|----------------------|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (A8b) pa-<br>800.0000<br>800.0000000000000000000000000 |                            |                                        |              |                                        |                   |                             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |                     |                |                |                               |                |                       |                      |
| Implane         Not         La         La <thla< th="">         La         La         &lt;</thla<>                                                                                                                                                                                                                                                                                        | <b>I γInuoH</b><br>9000448<br>900000<br>900000         | 0.01                       | <ul> <li>74'6</li> <li>8'5'</li> </ul> | m            | <ul> <li>46.9</li> <li>50.3</li> </ul> | ی<br>۲ <b>۰۲۶</b> | ∞ 29°0<br>922°0             | <mark>6'tS</mark> ග            | 11 <b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>61.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>17.7</b><br><b>1</b> | eginning                     | 13 <b>52.8</b>      | 10 <b>54.9</b> | [] <b>24'5</b> | 13     20:3       13     23.6 | 50 <b>21.4</b> | 51 <b>22.3</b>        | 53 <b>50.5</b>       |
| Nm         1         640         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620         620                                                                                                                                                                                                                                                                    | Timeframe                                              | Hour                       | L ea                                   | L max        | L <sub>min</sub>                       | L1%               | L2%                         | <b>L5%</b>                     | %87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L25%                         | 150%                | %067           | 195%           | %661                          | L ea           | Adj.                  | Adj. L <sub>ea</sub> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        | 0                          | 49.0                                   | 62.0         | 42.4                                   | 57.0              | 55.0                        | 53.0                           | 52.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 49.0                         | 46.0                | 44.0           | 43.0           | 42.0                          | 49.0           | 10.0                  | 59.0                 |
| MpH         3         651         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613                                                                                                                                                                                                                                                                   |                                                        | 7 1                        | 45.8<br>44.6                           | 60.4<br>60.9 | 41.1<br>39.4                           | 53.0<br>52.0      | 52.0<br>50.0                | 49.0<br>47.0                   | 48.0<br>46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 45.0<br>44.0                 | 43.0<br>43.0        | 42.0<br>41.0   | 42.0<br>41.0   | 41.0<br>40.0                  | 45.8<br>44.6   | 10.0<br>10.0          | 55.8<br>54.6         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Night                                                  | e                          | 45.1                                   | 61.4         | 41.0                                   | 54.0              | 51.0                        | 48.0                           | 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44.0                         | 43.0                | 41.0           | 41.0           | 41.0                          | 45.1           | 10.0                  | 55.1                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        | 4 ru v                     | 46.9<br>50.3                           | 65.2<br>63.5 | 42.3<br>43.3                           | 54.0<br>58.0      | 53.0<br>56.0                | 50.0<br>54.0                   | 49.0<br>52.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 46.0<br>50.0                 | 45.0<br>49.0        | 43.0<br>46.0   | 43.0<br>46.0   | 42.0<br>44.0                  | 46.9<br>50.3   | 10.0<br>10.0          | 56.9<br>60.3         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        | 9                          | 54.1<br>55.6                           | /1.4<br>67.6 | 4/./<br>503                            | 62.0              | 61.0                        | 58.0                           | 56.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 54.0<br>55.0                 | 52.0                | 49.0<br>52.0   | 49.0<br>52.0   | 48.0<br>51.0                  | 54.1<br>55.6   | 10.0                  | 64.1<br>55.6         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        | ~ ∞                        | 56.0                                   | 71.5         | 49.2                                   | 03.0<br>64.0      | 02.0<br>63.0                | 61.0                           | 59.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55.0                         | 53.0                | 51.0<br>51.0   | 51.0           | 50.0                          | 56.0           | 0.0                   | 56.0                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        | 6                          | 54.9                                   | 74.8         | 46.9                                   | 65.0              | 62.0                        | 58.0                           | 57.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 54.0                         | 52.0                | 49.0           | 49.0           | 48.0                          | 54.9           | 0.0                   | 54.9                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        | 10                         | 54.5                                   | 6.9          | 45.7                                   | 62.0              | 60.0                        | 58.0                           | 57.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55.0                         | 52.0                | 48.0           | 48.0           | 46.0                          | 54.5           | 0.0                   | 54.5                 |
| $ \begin{array}{l l l l l l l l l l l l l l l l l l l $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ċ                                                      | 12                         | 61.7<br>57.5                           | 92.9<br>81.8 | 45.2<br>42.3                           | 67.U<br>68.0      | 0.co                        | 63.U<br>62.0                   | 63.U<br>59.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 53.0<br>53.0                 | 54.0<br>51.0        | 48.0<br>48.0   | 47.0           | 40.0<br>44.0                  | 01.7<br>57.5   | 0.0                   | 01./<br>57.5         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | лау                                                    | 13                         | 52.8                                   | 65.9         | 46.8                                   | 60.0              | 58.0                        | 56.0                           | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 53.0                         | 51.0                | 49.0           | 48.0           | 48.0                          | 52.8           | 0.0                   | 52.8                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        | 14<br>15                   | 60. /<br>55 1                          | 85.9<br>76 1 | 46.8<br>48.3                           | 68.U              | 61.0<br>61.0                | 61.0<br>58.0                   | 59.0<br>57.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 54.0<br>54.0                 | 52.0                | 49.0<br>50.0   | 49.0           | 48.0                          | 60.7<br>55 1   | 0.0                   | 60.7<br>55.1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        | 16                         | 54.9                                   | 72.6         | 47.6                                   | 63.0              | 62.0                        | 59.0                           | 57.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 54.0                         | 52.0                | 50.0           | 49.0           | 48.0                          | 54.9           | 0.0                   | 54.9                 |
| 1         0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                                                                                                                                                                     |                                                        | 17                         | 54.2<br>57.6                           | 65.6<br>69 9 | 47.9<br>44 8                           | 61.0<br>60.0      | 60.0<br>58.0                | 58.0<br>56.0                   | 57.0<br>55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 54.0<br>52 0                 | 52.0                | 50.0<br>48.0   | 49.0<br>47.0   | 48.0<br>45.0                  | 54.2<br>52 6   | 0.0                   | 54.2<br>52 6         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | 19                         | 50.3                                   | 64.9         | 43.3                                   | 57.0              | 55.0                        | 53.0                           | 53.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50.0                         | 49.0                | 46.0           | 45.0           | 44.0                          | 50.3           | 5.0                   | 55.3                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Evening                                                | 20                         | 51.4<br>523                            | 66.1<br>68.2 | 44.7<br>A5 3                           | 57.0<br>62.0      | 55.0                        | 54.0<br>56.0                   | 53.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 51.0                         | 50.0                | 47.0           | 47.0           | 45.0                          | 51.4<br>52 3   | 5.0                   | 56.4<br>57 3         |
| NBRT         3         50.5         61.7         43.5         57.0         56.0         54.0         53.0         51.0         46.0         45.0         49.0         50.5         10.0         60.5           Timeframe         Hour         52.6         65.6         43.3         60.0         58.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0 <th< td=""><td></td><td>22</td><td>50.8</td><td>64.1</td><td>45.3</td><td>58.0</td><td>56.0</td><td>54.0</td><td>53.0</td><td>51.0</td><td>49.0</td><td>46.0</td><td>46.0</td><td>45.0</td><td>50.8</td><td>10.0</td><td>60.8</td></th<> |                                                        | 22                         | 50.8                                   | 64.1         | 45.3                                   | 58.0              | 56.0                        | 54.0                           | 53.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 51.0                         | 49.0                | 46.0           | 46.0           | 45.0                          | 50.8           | 10.0                  | 60.8                 |
| Timeframe         Las         Las <th< td=""><td>Night</td><td>23</td><td>50.5</td><td>61.7</td><td>43.5</td><td>57.0</td><td>56.0</td><td>54.0</td><td>53.0</td><td>51.0</td><td>49.0</td><td>46.0</td><td>45.0</td><td>44.0</td><td>50.5</td><td>10.0</td><td>60.5</td></th<>                         | Night                                                  | 23                         | 50.5                                   | 61.7         | 43.5                                   | 57.0              | 56.0                        | 54.0                           | 53.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 51.0                         | 49.0                | 46.0           | 45.0           | 44.0                          | 50.5           | 10.0                  | 60.5                 |
| Day         Min         52.6         69.6         42.3         60.0         58.0         55.0         51.0         48.0         47.0         54.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10         74.10                                                                                                                                                                                                                        | Timeframe                                              | Hour                       | L eq                                   | L max        | L min                                  | 11%               | L2%                         | L5%                            | <b>78%</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L25%                         | L50%                | %067           | <b>195%</b>    | %667                          |                | L <sub>eq</sub> (dBA) |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Day                                                    | Max                        | 52.6<br>61.7                           | 0.20<br>92.9 | 42.3<br>50.3                           | 60.0<br>68.0      | 0.8č<br>66.0                | 0.02<br>63.0                   | 0.cc<br>63.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 52.U<br>58.0                 | 51.0                | 48.U<br>52.0   | 47.0<br>52.0   | 44.0<br>51.0                  | 24-Hour        | Daytime               | Nighttime            |
| Feeting         Min         50.3         64.9         73.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         <                                                                                                                                                                                                                     | Energy /                                               | Average                    | 56.9                                   | Ave          | rage:                                  | 63.7              | 61.8                        | 59.1                           | 57.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 54.3                         | 52.2                | 49.3           | 48.8           | 47.6                          | C 7 7          | בכי                   | 70 6                 |
| Energy Average         51.4         Average:         58.7         56.7         54.3         53.3         50.7         49.3         46.7         45.0         45.0           Night         Min         44.6         60.4         39.4         52.0         50.0         47.0         46.0         43.0         41.0         41.0         40.0           Night         Max         54.1         71.4         47.7         62.0         61.0         58.0         54.0         52.0         49.0         49.0         49.0         48.0           Fenergy Average         49.6         Average:         56.1         54.0         52.0         49.0         48.0         48.0         58.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Evening                                                | Min<br>Max                 | 50.3                                   | 64.9<br>68.2 | 43.3<br>45.3                           | 57.0<br>62.0      | 55.0<br>60.0                | 53.0                           | 53.0<br>54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50.0                         | 49.0<br>50.0        | 46.0<br>47.0   | 45.0<br>47.0   | 44.0<br>46.0                  | 7.40           |                       |                      |
| Night         Min         44.6         60.4         39.4         52.0         50.0         47.0         46.0         44.0         43.0         41.0         41.0         40.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         40.0         40.0         48.0         50.0           Fenergy Average         49.6         A9.6         A4.0         43.2         44.0         43.0         43.0         43.0         50.0         50.0         50.0         50.0         50.0         48.2         46.6         44.0         43.0         43.0         43.0         43.0         43.0         50.0         50.0         50.0         50.0         44.0         40.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0                                                                                                                                                                                                                                 | Energy /                                               | Average                    | 51.4                                   | Ave          | rage:                                  | 58.7              | 56.7                        | 54.3                           | 53.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50.7                         | 49.3                | 46.7           | 46.0           | 45.0                          |                |                       |                      |
| Energy Average     49.6     Average:     56.1     54.4     51.9     50.6     48.2     46.6     44.0     43.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Night                                                  | Min                        | 44.6<br>54.1                           | 60.4<br>71 4 | 39.4                                   | 52.0<br>62.0      | 50.0<br>61.0                | 47.0<br>58.0                   | 46.0<br>56.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 44.0<br>54.0                 | 43.0                | 41.0<br>49.0   | 41.0<br>49.0   | 40.0<br>48.0                  |                | 58.1                  |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Energy /                                               | Average                    | 49.6                                   | Ave          | rage:                                  | 56.1              | 54.4                        | 51.9                           | 50.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48.2                         | 46.6                | 44.2           | 44.0           | 43.0                          |                |                       |                      |

U:\Uclobs\\_12100-12500\\_12100\12185\Fieldwork\12185\_L2\_Summary

88

| Date:<br>Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tuesday, Ja<br>3233 Thatch | nuary 08, 201<br>1er Avenue Vŧ | 9<br>enice   |                      | Location:     | L3 - Located<br>of the Proje               | on Thatche <sub>l</sub><br>ct site and N | r Avenue ne:<br>1 Avenue ne:<br>1 Irabella Apa | ar the easte<br>irtment Hoi | ern boundary<br>mes. | Meter:               | Piccolo I            |                      |                      | JN:<br>Analyst:       | 12185<br>R. Saber    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------|--------------|----------------------|---------------|--------------------------------------------|------------------------------------------|------------------------------------------------|-----------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-----------------------|----------------------|
| urly L <sub>eq</sub> (dBA)<br>800,075,050<br>800,050,050<br>800,000,050<br>800,000,050<br>800,000,050<br>800,000,050<br>800,000,050<br>800,000,050<br>800,000,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,0500<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050<br>800,050 |                            | 8                              | g            | e                    |               | 0.<br>0.                                   |                                          | 50000000000000000000000000000000000000         |                             | 5                    | <b>z</b> .           | 6                    | 3                    | E                    | ۲<br>۲                |                      |
| Hoi<br>35.0<br>35.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>3.74</u> o              | 1 44.3<br>8,24                 | ο <b>44.</b> | 5 <b>.01</b> 49.0    | ی<br>23°3     | ∞ ∞<br>• • • • • • • • • • • • • • • • • • | ິ <b>ເຮິງ</b> ອາ                         | 10 11 Hour B                                   | 12<br>eginning              | <b>53.2</b><br>13 14 | 15 16                | 17 54.               | 19 <b>51.4</b>       | 50 <b>25.</b>        | 53 21°3               | 23<br>23             |
| Timeframe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hour                       | L eq                           | L max        | L min                | L1%           | L2%                                        | <b>L5%</b>                               | %8 <b>7</b>                                    | L25%                        | <b>L50%</b>          | %067                 | 767                  | %667                 | L <sub>eq</sub>      | Adj.                  | Adj. L <sub>eq</sub> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 -                        | 47.8<br>45 8                   | 58.5<br>61 4 | 40.9<br>20 5         | 55.0          | 54.0                                       | 52.0                                     | 51.0                                           | 48.0<br>45.0                | 45.0                 | 42.0                 | 42.0                 | 41.0                 | 47.8<br>45 8         | 10.0                  | 57.8<br>55 8         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 7                        | 44.3                           | 6.09         | 39.5                 | 53.0          | 51.0                                       | 47.0                                     | 46.0                                           | 43.0                        | 42.0                 | 41.0                 | 41.0                 | 40.0                 | 44.3                 | 10.0                  | 54.3                 |
| Night                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m s                        | 44.6                           | 59.0         | 41.1                 | 51.0          | 49.0                                       | 47.0                                     | 46.0                                           | 44.0                        | 43.0                 | 41.0                 | 41.0                 | 41.0                 | 44.6                 | 10.0                  | 54.6<br>57.0         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 vo vo                    | 46.9<br>49.9<br>53.3           | 65.3<br>67.8 | 41.3<br>42.5<br>47 7 | 56.0<br>60.0  | 55.0<br>59.0                               | 53.0<br>53.0                             | 48.0<br>52.0<br>55.0                           | 46.U<br>50.0<br>53.0        | 45.0<br>48.0<br>57.0 | 43.0<br>45.0<br>49.0 | 42.0<br>44.0<br>49.0 | 42.0<br>43.0<br>48.0 | 46.9<br>49.9<br>53.3 | 10.0<br>10.0          | 50.9<br>59.9<br>63.3 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                          | 55.4                           | 67.4         | 49.9                 | 62.0          | 60.09                                      | 59.0                                     | 57.0                                           | 55.0                        | 54.0                 | 52.0                 | 51.0                 | 51.0                 | 55.4                 | 0.0                   | 55.4                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ∞                          | 55.0                           | 64.4         | 48.3                 | 61.0          | 60.0                                       | 58.0                                     | 57.0                                           | 55.0                        | 54.0                 | 51.0                 | 51.0                 | 49.0                 | 55.0                 | 0.0                   | 55.0                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <del>о</del> ,             | 53.7                           | 69.2<br>63 5 | 46.7                 | 60.0          | 59.0                                       | 57.0                                     | 56.0                                           | 53.0                        | 52.0                 | 49.0                 | 49.0                 | 48.0                 | 53.7                 | 0.0                   | 53.7                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 5                        | 57.1<br>61.6                   | 0./0<br>74.0 | 46.2<br>45 5         | 0.20<br>70.07 | 64.0<br>69.0                               | 63.U                                     | 66.0                                           | 0./c                        | 58.0<br>58.0         | 50.0                 | 49.0<br>49.0         | 47.0<br>47.0         | 57.1<br>61.6         | 0.0                   | 1./د<br>616          |
| Ne <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12                         | 53.0                           | 65.9         | 42.4                 | 61.0          | 59.0                                       | 57.0                                     | 55.0                                           | 53.0                        | 51.0                 | 48.0                 | 47.0                 | 44.0                 | 53.0                 | 0.0                   | 53.0                 |
| Vay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13                         | 53.2                           | 65.3<br>01 0 | 47.2                 | 60.0          | 58.0                                       | 56.0                                     | 55.0                                           | 53.0                        | 52.0                 | 49.0                 | 48.0                 | 47.0                 | 53.2                 | 0.0                   | 53.2                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14<br>14                   | 61.6<br>55.2                   | 85.9<br>75.7 | 47.9<br>48.9         | 71.0<br>61.0  | 68.0<br>60.0                               | 62.0<br>58.0                             | 59.0<br>57.0                                   | 55.0<br>54.0                | 53.0<br>53.0         | 50.0                 | 50.0                 | 49.0<br>49.0         | 61.6<br>55.2         | 0.0                   | 61.6<br>55.2         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16                         | 54.5                           | 65.6         | 47.7                 | 62.0          | 60.0                                       | 58.0                                     | 57.0                                           | 54.0                        | 52.0                 | 50.0                 | 49.0                 | 49.0                 | 54.5                 | 0.0                   | 54.5                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17<br>18                   | 54.9<br>52.8                   | 68.5<br>66 1 | 49.4<br>45.8         | 62.0<br>59.0  | 61.0<br>58.0                               | 59.0<br>56.0                             | 57.0<br>55.0                                   | 54.0<br>53.0                | 53.0<br>51.0         | 51.0<br>49.0         | 50.0<br>48.0         | 50.0<br>47 0         | 54.9<br>52.8         | 0.0                   | 54.9<br>57.8         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19                         | 51.4                           | 62.1         | 44.3                 | 58.0          | 57.0                                       | 55.0                                     | 54.0                                           | 51.0                        | 50.0                 | 47.0                 | 46.0                 | 45.0                 | 51.4                 | 5.0                   | 56.4                 |
| Evening                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20                         | 52.3                           | 63.4<br>70.7 | 46.4<br>45 0         | 58.0          | 57.0                                       | 55.0                                     | 54.0                                           | 52.0                        | 51.0                 | 49.0                 | 48.0                 | 47.0<br>46.0         | 52.3<br>52.1         | 5.0                   | 57.3<br>58.1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22                         | 51.2                           | 63.4         | 45.5                 | 57.0          | 56.0                                       | 55.0                                     | 54.0                                           | 51.0                        | 49.0                 | 47.0                 | 47.0                 | 46.0                 | 51.2                 | 10.0                  | 61.2                 |
| INIGNT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23                         | 50.7                           | 62.9         | 43.8                 | 58.0          | 57.0                                       | 55.0                                     | 53.0                                           | 51.0                        | 49.0                 | 46.0                 | 45.0                 | 44.0                 | 50.7                 | 10.0                  | 60.7                 |
| IImeframe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Min                        | L eq                           | L max        | L min                | 50 0          | L2%                                        | L5%                                      | 18%                                            | LZ5%                        | L50%                 | 190%<br>190%         | 195%                 | 74 0                 |                      | L <sub>eq</sub> (abA) |                      |
| Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Max                        | 52.0<br>61.6                   | 85.9         | 49.9                 | 71.0          | 0.02                                       | 67.0                                     | 66.0                                           | 62.0                        | 58.0                 | 52.0                 | 51.0                 | 51.0                 | 24-Hour              | Daytime               | Nighttime            |
| Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Average                    | 56.9                           | Aver         | age:                 | 62.8          | 61.3                                       | 59.2                                     | 57.7                                           | 54.8                        | 53.1                 | 50.0                 | 49.3                 | 48.1                 | 5 <u>4</u> 7         | 56.2                  | 2 94                 |
| Evening                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Min<br>Max                 | 51.4<br>53.1                   | 62.1<br>70.7 | 44.3<br>46.4         | 58.0<br>63.0  | 57.0<br>60.0                               | 55.0<br>56.0                             | 54.0<br>55.0                                   | 51.0<br>52.0                | 50.0<br>51.0         | 47.0<br>49.0         | 46.0<br>48.0         | 45.0<br>47.0         | 24-                  | Hour CNEL (           |                      |
| Energy /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Average                    | 52.3                           | Aver         | age:                 | 59.7          | 58.0                                       | 55.3                                     | 54.3                                           | 51.7                        | 50.3                 | 47.7                 | 47.0                 | 46.0                 |                      |                       |                      |
| Night                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Min<br>Max                 | 44.3<br>53.3                   | 58.5<br>67.8 | 39.5<br>47.2         | 51.0<br>60.0  | 49.0<br>59.0                               | 47.0<br>56.0                             | 46.0<br>55.0                                   | 43.0<br>53.0                | 42.0<br>52.0         | 41.0<br>49.0         | 41.0<br>49.0         | 40.0<br>48.0         |                      | 58.0                  |                      |
| Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Average                    | 49.3                           | Aver         | age:                 | 55.4          | 53.9                                       | 51.6                                     | 50.3                                           | 47.9                        | 46.2                 | 43.9                 | 43.6                 | 42.9                 |                      |                       |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                                |              |                      |               |                                            |                                          |                                                |                             |                      |                      |                      |                      |                      |                       |                      |

U:\Uclobs\\_12100-12500\\_12100\12185\Fieldwork\12185\_L3\_Summary

89

| Date:<br>Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tuesday, Jai<br>3233 Thatch | nuary 08, 201<br>1er Avenue Vé | .9<br>enice      |                  | Location:     | of the Project        | ct site and H. | arbor Cross    | ing Lane.      |                                                                            |                      |              |                                             |                      | ninin                 | K. Jäller            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------|------------------|------------------|---------------|-----------------------|----------------|----------------|----------------|----------------------------------------------------------------------------|----------------------|--------------|---------------------------------------------|----------------------|-----------------------|----------------------|
| ( <b>A8b)</b><br>7500<br>7500<br>7500<br>7500<br>7500<br>7500<br>7500<br>750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                |                  |                  |               |                       | Hourly Lea     | 18A Reading    | s (nnadjusted  |                                                                            |                      |              |                                             |                      |                       |                      |
| <b>μ₀ J γhuoH</b><br>40000<br>90005050<br>9000050<br>9000050<br>9000050<br>9000050<br>9000050<br>9000050<br>9000050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900050<br>900000000 | 2.02 o                      | ₽.₹₽<br>₽.₹₽<br>₽.₹₽           | <b>10.000</b> m  | 48.5<br>7.22     | ۵ <b>22:5</b> | ₩<br>₩<br>₩<br>₩<br>₩ | <b>Σ:95</b> σ  | 9 <b>.29</b> 0 | 12 <b>54.4</b> | <b>11</b><br><b>11</b><br><b>11</b><br><b>11</b><br><b>11</b><br><b>11</b> | 15 <b>55.2</b><br>16 | 2.722        | 13     25.5     61       13     54.3     10 | <b>T.</b> , <b>p</b> | 53 <b>52.0</b>        | 53 <b>ST.7</b>       |
| Timeframe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hour                        | L eq                           | L max            | Lmin             | L1%           | 12%                   | L5%            | 18%            | 125%           | <b>720%</b>                                                                | %067                 | <b>195%</b>  | %667                                        | L eq                 | Adj.                  | Adj. L <sub>eq</sub> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                           | 50.7                           | 62.4             | 42.4             | 58.0          | 57.0                  | 55.0           | 54.0           | 51.0           | 48.0                                                                       | 45.0                 | 44.0         | 43.0                                        | 50.7                 | 10.0                  | 60.7                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <del>,</del> 1              | 47.4<br>AF A                   | 62.6<br>67 0     | 41.1             | 56.0          | 54.0                  | 52.0           | 50.0           | 47.0           | 45.0                                                                       | 42.0                 | 41.0         | 41.0                                        | 47.4<br>45.4         | 10.0                  | 57.4<br>55 A         |
| Night                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | v m                         | 45.4<br>46.4                   | 59.6             | 41.1<br>41.3     | 54.0          | 52.0                  | 49.0           | 47.0           | 44.0           | 45.0                                                                       | 42.0<br>43.0         | 41.0         | 42.0                                        | 45.4                 | 10.0                  | 56.4                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                           | 48.5                           | 65.7             | 43.3             | 57.0          | 55.0                  | 51.0           | 50.0           | 48.0           | 46.0                                                                       | 44.0                 | 44.0         | 43.0                                        | 48.5                 | 10.0                  | 58.5                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | оv                          | 52.1<br>55.2                   | 69.8<br>72.1     | 43.8<br>47.1     | 60.0<br>63.0  | 57.0<br>61.0          | 55.0<br>59.0   | 54.0<br>58.0   | 52.0<br>55.0   | 50.0<br>53.0                                                               | 46.0<br>50.0         | 46.0<br>49.0 | 44.0<br>48.0                                | 52.1<br>55.2         | 10.0<br>10.0          | 62.1<br>65.2         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7                           | 57.4                           | 70.1             | 50.4             | 65.0          | 63.0                  | 61.0           | 60.0           | 57.0           | 56.0                                                                       | 53.0                 | 52.0         | 51.0                                        | 57.4                 | 0.0                   | 57.4                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                           | 57.4                           | 71.2             | 49.9             | 64.0          | 63.0                  | 61.0           | 59.0           | 57.0           | 56.0                                                                       | 54.0                 | 53.0         | 51.0                                        | 57.4                 | 0.0                   | 57.4                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | o (                         | 56.2                           | 69.4<br>74.2     | 49.0             | 63.0          | 62.0<br>71.0          | 60.0           | 59.0           | 56.0           | 54.0                                                                       | 52.0                 | 51.0         | 50.0                                        | 56.2                 | 0.0                   | 56.2<br>52.5         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11                          | 02.0<br>57.4                   | 76.3             | 49.0<br>44.4     | 65.0          | / T.U<br>63.0         | 61.0<br>61.0   | 0.00<br>60.0   | 0.10           | 55.0                                                                       | 52.0                 | 50.0<br>50.0 | 0.0c<br>48.0                                | 02.0<br>57.4         | 0.0                   | 02.0<br>57.4         |
| Dov.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12                          | 54.4                           | 72.7             | 45.6             | 61.0          | 60.0                  | 57.0           | 56.0           | 54.0           | 52.0                                                                       | 49.0                 | 49.0         | 47.0                                        | 54.4                 | 0.0                   | 54.4                 |
| ζaγ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13                          | 55.1<br>20.0                   | 72.2             | 47.9             | 63.0          | 60.0                  | 58.0           | 57.0           | 55.0           | 53.0                                                                       | 51.0                 | 50.0         | 49.0<br>-0.0                                | 55.1<br>50.0         | 0.0                   | 55.1                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14<br>15                    | 59.3<br>56.6                   | 9.97<br>1.77     | 48.9<br>10 1     | 69.0<br>64.0  | 67.0<br>62.0          | 62.0<br>60.0   | 60.0<br>5 a D  | 57.0<br>56.0   | 54.0<br>55.0                                                               | 52.0                 | 51.0         | 50.0<br>50.0                                | 59.3<br>56.6         | 0.0                   | 59.3<br>56.6         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16                          | 57.2                           | 75.0             | 49.6             | 65.0          | 63.0                  | 61.0           | 59.0           | 56.0           | 55.0                                                                       | 52.0                 | 51.0         | 51.0                                        | 57.2                 | 0.0                   | 57.2                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17                          | 57.2<br>EA 2                   | 75.9<br>76 5     | 49.4<br>17.2     | 66.0<br>60.0  | 65.0<br>5 0           | 61.0<br>E7 0   | 59.0<br>56.0   | 56.0           | 54.0                                                                       | 52.0                 | 51.0         | 50.0                                        | 57.2<br>EA 2         | 0.0                   | 57.2<br>EA 2         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19                          | 52.5                           | 64.9             | 45.8             | 58.0          | 56.0                  | 55.0           | 54.0           | 53.0           | 51.0                                                                       | 49.0                 | 48.0         | 47.0                                        | 52.5                 | 5.0                   | 57.5                 |
| Evening                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20                          | 54.1                           | 74.6             | 46.2             | 61.0          | 59.0                  | 57.0           | 56.0           | 54.0           | 52.0                                                                       | 50.0                 | 49.0         | 47.0                                        | 54.1                 | 5.0                   | 59.1                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17                          | 57.0                           | 64.7             | 42.C4<br>44.8    | 59 ()         | 0.10                  | 0.72<br>55.0   | 54.0           | 52.0           | 0.1.C                                                                      | 48.U<br>48.0         | 47.0         | 46.U<br>45 ()                               | 57 U                 | 10.0                  | 62 U                 |
| Night                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23                          | 51.7                           | 61.6             | 45.1             | 58.0          | 57.0                  | 56.0           | 55.0           | 52.0           | 50.0                                                                       | 47.0                 | 46.0         | 46.0                                        | 51.7                 | 10.0                  | 61.7                 |
| Timeframe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hour                        | L <sub>eq</sub>                | L <sub>max</sub> | L <sub>min</sub> | 11%           | L2%                   | 72%            | %87            | 125%           | 720%                                                                       | %067                 | <i>1</i> 95% | %667                                        |                      | L <sub>eq</sub> (dBA) |                      |
| Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Min<br>Max                  | 54.3<br>62.6                   | 69.4<br>79.9     | 44.4<br>50.4     | 60.0<br>72.0  | 58.0<br>71.0          | 57.0<br>70.0   | 56.0<br>68.0   | 54.0<br>61.0   | 52.0<br>56.0                                                               | 49.0<br>54.0         | 49.0<br>53.0 | 47.0<br>51.0                                | 24-Hour              | Daytime               | Nighttime            |
| Energy /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Average                     | 57.7                           | Ave              | rage:            | 64.8          | 63.1                  | 60.8           | 59.3           | 56.3           | 54.4                                                                       | 51.8                 | 50.9         | 49.6                                        |                      | C 7 J                 | <b>C</b> 1 0         |
| Evening                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Min                         | 52.5<br>57 8                   | 64.9<br>77 0     | 45.5<br>46.2     | 58.0<br>64.0  | 56.0                  | 55.0           | 54.0<br>56.0   | 53.0           | 51.0                                                                       | 48.0<br>50.0         | 47.0         | 46.0<br>47.0                                |                      |                       |                      |
| Energy /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Average                     | 53.9                           | Ave              | rage:            | 61.0          | 58.7                  | 56.3           | 55.3           | 53.3           | 51.3                                                                       | 49.0                 | 48.0         | 46.7                                        | 7                    |                       | hua                  |
| Night                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Min<br>Max                  | 45.4<br>55.2                   | 59.6<br>72.1     | 41.1<br>47.1     | 53.0<br>63.0  | 51.0<br>61.0          | 49.0<br>59.0   | 47.0<br>58.0   | 44.0<br>55.0   | 43.0<br>53.0                                                               | 42.0<br>50.0         | 41.0<br>49.0 | 41.0<br>48.0                                |                      | 59.3                  |                      |
| Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Average                     | 51.0                           | Ave              | rage:            | 57.6          | 55.7                  | 53.4           | 52.2           | 49.7           | 47.8                                                                       | 45.2                 | 44.4         | 43.7                                        |                      |                       |                      |

U:\Uclobs\\_12100-12500\\_12100\12185\Fieldwork\12185\_L4\_Summary

06

| Date:                         | Tuesday    | nuary 08, 20' | 19               |                  | l ocation .  | L5 - Locateo              | d on Oxford              | Avenue near     | the southw      | estern            | Met          | er. Piccolo |      |               |                 | - NI         | 12185                |
|-------------------------------|------------|---------------|------------------|------------------|--------------|---------------------------|--------------------------|-----------------|-----------------|-------------------|--------------|-------------|------|---------------|-----------------|--------------|----------------------|
| Project:                      | 3233 Thatc | her Avenue V  | 'enice           |                  |              | boundary c<br>residential | of the Project<br>homes. | : site and exi  | sting single-   | -family           |              |             |      |               |                 | Analyst:     | R. Saber             |
|                               |            |               |                  |                  |              |                           | Hourly L <sub>eq</sub>   | dBA Reading.    | s (unadjuste    | a)                |              |             |      |               |                 |              |                      |
| 85.0<br>80.0                  |            |               |                  |                  |              |                           |                          |                 |                 |                   |              |             |      |               |                 |              |                      |
| A <b>ab)</b>                  |            |               |                  |                  |              |                           |                          |                 |                 |                   |              |             |      |               |                 |              |                      |
| 0.00<br>۳<br>۳<br>۳<br>۳<br>۳ |            |               |                  |                  |              |                           |                          |                 |                 |                   |              |             |      |               |                 |              |                      |
| Hourly 50.04                  | ε.۲        | <b>£.</b> ð.  | 9.8              | 2.2              | 6.22         | 8.22                      | <b>Z.22</b>              | 2°73            | 8.0             | 9.2<br>9.2<br>9.0 | 8.5          | 0°T9        | 2.0  | <b>2.0</b>    | S.0             | 9°0          | 6.8                  |
| - 40.0<br>35.0                | לי<br>ו    | לי<br>        | <br>ס<br>        | S                |              |                           |                          |                 | S               |                   | S            | 5           | S    | S             | S               | S            | Þ                    |
|                               | 0          | 1 2           | Ω                | 4 5              | 9            | 7 8                       | 6                        | 10 11<br>Hour B | 12<br>Jeginning | 13 14             | 15           | 16 17       | 7 18 | 19            | 20              | 21 22        | 23                   |
|                               |            |               |                  |                  |              |                           |                          |                 |                 |                   |              |             |      |               |                 |              |                      |
| Timeframe                     | Hour       | L eq          | L <sub>max</sub> | L <sub>min</sub> | L1%          | <b>L2%</b>                | <b>75%</b>               | %87             | L25%            | 150%              | %067         | 567         | 7 %  | 66%           | L <sub>eq</sub> | Adj.         | Adj. L <sub>eq</sub> |
|                               | 0,         | 47.3          | 59.0             | 42.9             | 55.0         | 54.0                      | 50.0                     | 49.0            | 47.0            | 45.0              | 44.0         | 44.         | 0 0  | 43.0          | 47.3            | 10.0         | 57.3                 |
|                               | r          | 46.3          | 61.4<br>62.4     | 43.0             | 52.0         | 50.0                      | 48.0                     | 47.0            | 46.0            | 45.0              | 44.0         | 44.         | 0.0  | 13.0          | 46.3<br>46.0    | 10.0         | 56.3<br>E.c.o        |
| Night                         | νm         | 40.8<br>48.6  | 02.1<br>64.6     | 42.9<br>44.2     | 55.0         | 53.0                      | 48.U<br>51.0             | 47.U<br>50.0    | 40.0            | 45.0              | 44.0         | 44.         | 0.0  | 43.U<br>44.0  | 40.8<br>48.6    | 10.0<br>10.0 | 58.6                 |
| þ                             | 9 4        | 52.1          | 66.1             | 45.7             | 60.0         | 58.0                      | 55.0                     | 54.0            | 52.0            | 50.0              | 48.0         | 47.         | 0    | 46.0          | 52.1            | 10.0         | 62.1                 |
|                               | Б          | 54.2          | 62.5<br>61 -7    | 48.6             | 59.0         | 58.0                      | 57.0                     | 56.0            | 55.0            | 53.0              | 51.0         | 50.         | 0.0  | 49.0          | 54.2            | 10.0         | 64.2<br>CF 0         |
|                               | 0 F        | 0.00<br>0     | 1.00             | 51.2<br>51.2     | 0.10         | 0.60                      | 0.38.0                   | 5 / .0          | 0.00            | 0.66              | 54.0         | 53<br>73    |      | 03.0          | צ.ככ<br>הב ס    | 0.0T         | 05.9<br>66 0         |
|                               | ~ ∞        | 54.8          | 0.9.1<br>68.0    | 48.7             | 01.0<br>61.0 | 0.00<br>60.0              | 58.0                     | 57.0            | 54.0            | 53.0              | 51.0         | 51.         |      | 50.0          | 54.8            | 0.0          | 54.8                 |
|                               | ი          | 55.2          | 80.2             | 46.0             | 63.0         | 59.0                      | 57.0                     | 57.0            | 55.0            | 52.0              | 48.0         | 47.         | 0    | 47.0          | 55.2            | 0.0          | 55.2                 |
|                               | 10         | 56.4          | 75.2             | 45.3             | 61.0         | 60.0                      | 59.0                     | 58.0            | 57.0            | 55.0              | 49.0         | 48.         | 0    | 47.0          | 56.4            | 0.0          | 56.4                 |
|                               | 11 ;       | 51.7          | 66.4<br>67 -     | 43.8             | 60.0<br>11   | 58.0                      | 56.0                     | 55.0            | 51.0            | 49.0              | 46.0         | 46.         | 0 0  | 44.0          | 51.7            | 0.0          | 51.7<br>50.0         |
| Dау                           | 1 2        | 8.Uč          | 0.20<br>86.0     | 44.1<br>44.6     | 0.7c         | 0.05<br>62.0              | 0.42<br>58.0             | 56.0            | 52.0            | 49.0              | 46.0         | 46.         |      | 45.U          | 8.Uc<br>60.0    | 0.0          | 8.Uč                 |
|                               | 14         | 52.6          | 71.0             | 45.0             | 61.0         | 58.0                      | 56.0                     | 55.0            | 52.0            | 50.0              | 47.0         | 47.         | 0    | 46.0          | 52.6            | 0.0          | 52.6                 |
|                               | 15         | 52.8          | 77.4             | 45.9             | 60.0         | 58.0                      | 56.0                     | 55.0            | 52.0            | 50.0              | 48.0         | 47.         | 0    | 46.0          | 52.8            | 0.0          | 52.8                 |
|                               | 16         | 53.4          | 69.69            | 45.7             | 63.0         | 60.0                      | 57.0                     | 56.0            | 53.0            | 50.0              | 48.0         | 47.         | 0    | 46.0          | 53.4            | 0.0          | 53.4                 |
|                               | 17         | 50.2          | 63.3<br>65.0     | 45.2<br>44.0     | 57.0<br>57.0 | 56.0<br>55.0              | 55.0<br>53.0             | 54.0            | 50.0            | 49.0              | 47.0<br>46.0 | 45.         |      | 45.0<br>44.0  | 51.0            | 0.0          | 51.0                 |
|                               | 19         | 50.7          | 66.8             | 45.3             | 55.0         | 54.0                      | 53.0                     | 52.0            | 50.0            | 49.0              | 47.0         | 47.         | 0    | 46.0          | 50.7            | 5.0          | 55.7                 |
| Evening                       | 20         | 50.5          | 67.4             | 45.0             | 58.0         | 56.0                      | 53.0                     | 52.0            | 50.0            | 48.0              | 46.0         | 46.         | 0 0  | 45.0          | 50.5<br>51 F    | 5.0          | 55.5<br>E.C.E        |
|                               | 22         | 50.6          | 63.1             | 44.7             | 57.0         | 56.0                      | 54.0                     | 53.0            | 51.0            | 49.0              | 47.0         | 46.         |      | 45.0          | 20.6            | 10.0         | 60.6                 |
| Night                         | 23         | 48.9          | 56.7             | 44.4             | 54.0         | 53.0                      | 52.0                     | 51.0            | 49.0            | 48.0              | 46.0         | 45.         | 0    | 45.0          | 48.9            | 10.0         | 58.9                 |
| Timeframe                     | Hour       | L eq          | L <sub>max</sub> | L <sub>min</sub> | L1%          | L2%                       | <b>T5%</b>               | %8T             | L25%            | 150%              | %067         | 767         | 7 %  | 86%           |                 | L eq (dBA)   |                      |
| Day                           | Min        | 50.2          | 63.3             | 43.8             | 57.0         | 55.0                      | 53.0                     | 53.0            | 50.0            | 48.0              | 46.0         | 45.         | 0 0  | 44.0<br>0     | 24-Hour         | Daytime      | Nighttime            |
| Fnarav /                      | IVIAX      | 60.U          | 80.U             | 51.3<br>2006     | 60.6         | 62.U<br>58 5              | 0.93<br>56 F             | 58.U<br>55.6    | 57.0            | 50.7              | 125.U        | 77          |      | 0.2C          |                 |              |                      |
| 19.01                         | Min        | 50 E          | 66 R             | 45 N             | 55 D         | 0.02                      | 0.52                     | 50 U            | 50.0            | 18.0              | 46.0         | 46          |      | 15.0          | 53.3            | 54.2         | 51.3                 |
| Evening                       | Max        | 51.5          | 68.0             | 46.3             | 59.0         | 57.0                      | 54.0                     | 53.0            | 51.0            | 49.0              | 47.0         | 47.         | 0    | 16.0          | 24-1            | Hour CNEL (  | IBA)                 |
| Energy /                      | Average    | 50.9          | Ave              | rage:            | 57.3         | 55.7                      | 53.3                     | 52.3            | 50.3            | 48.7              | 46.7         | 46.         | 7    | 45.7          |                 |              |                      |
| Night                         | Max        | 46.3<br>EE 0  | 56.7<br>66.1     | 42.9<br>E2.6     | 52.0         | 50.0                      | 48.0                     | 47.0            | 46.0<br>E.C.O   | 45.0              | 44.0         | 44.         | 0.0  | 43.0<br>= 2 0 |                 | 58.5         |                      |
| Fnerøv /                      | Werage     | 513           | AVer<br>AVer     | 0.7C             | с 95<br>о.то | 0.2C                      | 0.00                     | 51.6            | 50.0            | 48.6              | 47.0         | 46          |      | 15.7          |                 |              |                      |
| - 10                          |            | ) + )         |                  | 464.             | 1.25         | 2                         | 5                        | 010             | 2               |                   |              | 2           | t    |               |                 |              |                      |

U:\Uclobs\\_12100-12500\\_12100\12185\Fieldwork\12185\_L5\_Summary

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                               |                  |                  |              | 24-Hou                        | ur Noise L                          | evel Measu                      | irement Si                    | ummary                    |              |              |              |                 |                 |                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------|------------------|------------------|--------------|-------------------------------|-------------------------------------|---------------------------------|-------------------------------|---------------------------|--------------|--------------|--------------|-----------------|-----------------|----------------------|
| Date:<br>Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Wednesday.<br>3233 Thatch | , January 09,<br>ιer Avenue V | 2019<br>enice    |                  | Location:    | L6 - Located<br>the Project s | on Oxford <i>F</i><br>ite and exist | wenue near t<br>ting single-fai | he western I<br>nily resident | ooundary of<br>ial homes. | Meter:       | Piccolo I    |              |                 | JN:<br>Analyst: | 12185<br>R. Saber    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                               |                  |                  |              |                               | Hourly L eq                         | dBA Readings                    | (unadjusted)                  |                           |              |              |              |                 |                 |                      |
| A81<br>2000<br>7500<br>7500<br>7500<br>7500<br>7500<br>7500<br>7500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |                               |                  |                  |              |                               |                                     |                                 |                               |                           |              |              |              |                 |                 |                      |
| (1 mg/s (1 mg/s (2 mg | 90°.2                     | £.82                          | ۲.82             | 2.82             | 8.09         | 6 <sup>-</sup> 25             | 9 <sup>.05</sup>                    | 51.2<br>6.05                    | S'OS                          | 9.22                      | 2.95         | <u></u>      | 0.03         | 2.59            | £'S9            | S.1.9                |
| 35.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                         | 1 2                           | κ                | 4 5              | 9            | 7 8                           | 6                                   | 11<br>Hour Be                   | 12 1<br>ginning               | 3 14                      | 15 16        | 17           | 18 19        | 20              | 21 22           | 23                   |
| Timeframe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hour                      | L eq                          | L <sub>max</sub> | L <sub>min</sub> | L1%          | 12%                           | 15%                                 | %87                             | L25%                          | 150%                      | %067         | <b>195%</b>  | %667         | L <sub>eq</sub> | Adj.            | Adj. L <sub>eq</sub> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                         | 60.2                          | 74.6             | 57.5             | 66.0         | 64.0                          | 63.0                                | 62.0                            | 60.0                          | 59.0                      | 58.0         | 58.0         | 57.0         | 60.2            | 10.0            | 70.2                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1 c                      | 59.4<br>58.7                  | 71.7<br>67.2     | 57.5<br>57.6     | 64.0<br>60.0 | 63.0<br>60.0                  | 61.0<br>50.0                        | 61.0<br>50.0                    | 59.0<br>58.0                  | 58.0<br>58.0              | 58.0         | 57.0         | 57.0<br>57.0 | 59.4<br>58.7    | 10.0            | 69.4<br>68.7         |
| Night                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7 M                       | 58.7                          | 0.7.2<br>66.0    | 57.4             | 00.0<br>61.0 | 60.0<br>60.0                  | 59.0                                | 59.0                            | 58.0                          | 58.0                      | 58.0         | 58.0         | 57.0         | 58.7            | 10.0            | 00.7<br>68.7         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                         | 58.7                          | 70.3             | 57.5             | 61.0         | 60.0                          | 59.0                                | 59.0                            | 58.0                          | 58.0                      | 58.0         | 57.0         | 57.0         | 58.7            | 10.0            | 68.7                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ъо                        | 59.7<br>60.8                  | 71.7<br>70.7     | 57.4<br>57.5     | 64.0<br>66.0 | 63.0<br>65.0                  | 62.0<br>64.0                        | 61.0<br>64.0                    | 59.0<br>60.0                  | 59.0<br>58.0              | 58.0<br>58.0 | 58.0<br>58.0 | 57.0<br>57.0 | 59.7<br>60.8    | 10.0<br>10.0    | 69.7<br>70.8         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                         | 65.2                          | 78.7             | 57.9             | 71.0         | 70.0                          | 69.0                                | 69.0                            | 66.0                          | 62.0                      | 58.0         | 58.0         | 58.0         | 65.2            | 0.0             | 65.2                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                         | 57.9                          | 76.6             | 42.1             | 71.0         | 66.0                          | 61.0                                | 60.0                            | 56.0                          | 50.0                      | 45.0         | 44.0         | 43.0         | 57.9            | 0.0             | 57.9                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | б (                       | 50.6                          | 66.6<br>67 p     | 43.4             | 59.0         | 57.0                          | 55.0                                | 54.0                            | 50.0                          | 48.0                      | 45.0         | 44.0         | 44.0         | 50.6            | 0.0             | 50.6                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 01<br>1                   | 50.9<br>51.5                  | 66.3<br>66.3     | 43./<br>13.6     | 60.0<br>60.0 | 0.82<br>79.0                  | 56.0                                | 53.U                            | 0.02                          | 48.0                      | 46.U         | 45.U         | 44.U         | 50.9<br>51.2    | 0.0             | 50.9<br>51.2         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12                        | 50.5                          | 64.3             | 42.5             | 57.0         | 56.0                          | 54.0                                | 53.0                            | 51.0                          | 49.0                      | 46.0         | 45.0         | 44.0         | 50.5            | 0.0             | 50.5                 |
| Гау                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13                        | 59.2                          | 84.5             | 44.4             | 65.0         | 62.0                          | 58.0                                | 57.0                            | 52.0                          | 50.0                      | 47.0         | 46.0         | 44.0         | 59.2            | 0.0             | 59.2                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14<br>15                  | 52.6<br>51.8                  | 63.9<br>77 5     | 46.3<br>49.2     | 60.0<br>60.0 | 59.0<br>59.0                  | 57.0<br>57.0                        | 55.0<br>56.0                    | 52.0<br>55.0                  | 50.0<br>53.0              | 48.0<br>51.0 | 48.0<br>50.0 | 47.0<br>50.0 | 52.6<br>54 8    | 0.0             | 52.6<br>54 8         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16                        | 56.7                          | 68.5<br>68.5     | 54.0             | 60.0<br>60.0 | 59.0                          | 58.0                                | 58.0                            | 57.0                          | 56.0                      | 55.0         | 55.0         | 54.0         | 56.7            | 0.0             | 56.7                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17                        | 57.7<br>60.0                  | 71.6             | 56.3<br>56.5     | 60.0<br>68.0 | 60.0<br>65 0                  | 59.0                                | 58.0                            | 57.0<br>58.0                  | 57.0<br>50                | 56.0<br>57 0 | 56.0         | 56.0<br>56.0 | 57.7<br>60.0    | 0.0             | 57.7<br>60.0         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19                        | 61.4                          | 78.1             | 56.8             | 71.0         | 0.69                          | 65.0                                | 63.0                            | 59.0                          | 58.0                      | 57.0         | 57.0         | 57.0         | 61.4            | 5.0             | 66.4                 |
| Evening                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                        | 63.2<br>24 5                  | 80.3             | 56.9             | 73.0         | 71.0                          | 0.69                                | 67.0                            | 61.0                          | 59.0                      | 57.0         | 57.0         | 57.0         | 63.2            | 5.0             | 68.2<br>20 -         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21<br>72                  | C.10                          | 84.U<br>88.6     | 50.9<br>57.3     | 73.0         | 08.U<br>71.0                  | 0.60                                | 64.U                            | 63.0                          | 0.28<br>6.1 0             | 58 N         | 0./C         | 57.0         | C.10<br>65.3    | 0.0             | C.00<br>75 2         |
| Night                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23<br>23                  | 61.5                          | 75.9             | 57.7             | 68.0<br>68.0 | 0.1.V<br>67.0                 | 00.0<br>65.0                        | 64.0                            | 0.c0<br>61.0                  | 0.09                      | 58.0         | 58.0         | 58.0<br>58.0 | 61.5            | 10.0            | 71.5                 |
| Timeframe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hour                      | L eq                          | L <sub>max</sub> | L <sub>min</sub> | L1%          | L2%                           | <b>L5%</b>                          | 78%                             | L25%                          | 720%                      | %067         | 195%         | %667         |                 | L eq (dBA)      |                      |
| Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Min                       | 50.5<br>61.3                  | 63.9<br>84 F     | 42.1             | 57.0         | 56.0<br>70.0                  | 54.0                                | 53.0                            | 50.0                          | 48.0                      | 45.0<br>F8.0 | 44.0         | 43.0<br>F8.0 | 24-Hour         | Daytime         | Nighttime            |
| Energy /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Average                   | 58.1                          | Aver             | age:             | 62.6         | 60.8                          | 58.3                                | 57.3                            | 54.5                          | 52.4                      | 49.9         | 49.4         | 48.7         |                 |                 |                      |
| Evening                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Min                       | 61.4                          | 78.1             | 56.8             | 70.0         | 68.0                          | 65.0                                | 63.0                            | 59.0                          | 58.0                      | 57.0         | 57.0         | 57.0         | 000             | 5.70            | 00.7                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Max                       | 63.2<br>53.4                  | 84.0             | 56.9             | 73.0         | 71.0                          | 69.0                                | 67.0                            | 61.0                          | 59.0                      | 57.0         | 57.0         | 57.0         | 24-1            | lour CNEL (o    | BA)                  |
| Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Average                   | 58 7                          | AVEI<br>66.0     | rage:<br>57.2    | /1.3<br>60.0 | 60.0<br>60.0                  | 60.3<br>50.0                        | 59.0<br>50.0                    | 60.0<br>58 0                  | 58.0                      | 58.0         | 57.0         | 57.0         |                 |                 |                      |
| Night                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Max                       | 65.3                          | 88.6             | 57.7             | 73.0         | 71.0                          | 68.0                                | 66.0                            | 63.0                          | 61.0                      | 58.0         | 58.0         | 58.0         |                 | <b>c./9</b>     |                      |
| Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Average                   | 60.9                          | Aver             | age:             | 64.8         | 63.7                          | 62.2                                | 61.7                            | 59.6                          | 58.8                      | 58.0         | 57.8         | 57.1         |                 |                 |                      |

U:\Uclobs\\_12100-12500\\_12100\12185\Fieldwork\12185\_L6\_Summary

APPENDIX 7.1:

**OFF-SITE TRAFFIC NOISE CONTOURS** 





Scenario: Existing Without Project Road Name: Lincoln Bl. Road Segment: n/o W. Washington Bl.

|                                                                                                                                              |                  | <b>J</b> • •   |       |          |          |          |                                |          |             |          |         |
|----------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|-------|----------|----------|----------|--------------------------------|----------|-------------|----------|---------|
| SITE                                                                                                                                         | SPECIFIC IN      | PUT DATA       |       |          |          | <u> </u> | NOISE N                        | NODE     |             | S        |         |
| Highway Data                                                                                                                                 |                  |                |       |          | Site Con | ditions  | (Hard =                        | 10, So   | oft = 15)   |          |         |
| Average Daily                                                                                                                                | Traffic (Adt): 3 | 1,700 vehicle  | s     |          |          |          |                                | Autos:   | 15          |          |         |
| Peak Hour                                                                                                                                    | Percentage:      | 10%            |       |          | Me       | dium Tı  | rucks (2 A                     | Axles):  | 15          |          |         |
| Peak H                                                                                                                                       | lour Volume:     | 3,170 vehicle  | s     |          | He       | avy Tru  | icks (3+ A                     | Axles):  | 15          |          |         |
| Ve                                                                                                                                           | hicle Speed:     | 40 mph         |       |          | Vehicle  | Mix      |                                |          |             |          |         |
| Near/Far La                                                                                                                                  | ne Distance:     | 82 feet        |       |          | Veh      | icleType | э                              | Day      | Evening     | Night    | Daily   |
| Site Data                                                                                                                                    |                  |                |       |          |          |          | Autos:                         | 77.5%    | 12.9%       | 9.6%     | 97.42%  |
| Ba                                                                                                                                           | rrier Height:    | 0.0 feet       |       |          | M        | ədium T  | rucks:                         | 84.8%    | 4.9%        | 10.3%    | 1.84%   |
| Barrier Type (0-W                                                                                                                            | /all, 1-Berm):   | 0.0            |       |          | ŀ        | Heavy T  | rucks:                         | 86.5%    | 2.7%        | 10.8%    | 0.74%   |
| Centerline Di                                                                                                                                | st. to Barrier:  | 136.0 feet     |       |          | Noise So | ource E  | levation                       | s (in fe | et)         |          |         |
| Centerline Dist.                                                                                                                             | to Observer:     | 146.0 feet     |       | -        |          |          | <u>s'</u> 01                   | 000      | ,           |          |         |
| Barrier Distance                                                                                                                             | to Observer:     | 10.0 feet      |       |          | Madiu    | m Truck  | (s <sup>.</sup> 2 <sup>.</sup> | 207      |             |          |         |
| Observer Height (                                                                                                                            | (Above Pad):     | 5.0 feet       |       |          | Hoay     | n Truck  | (s. 2.)                        | 006      | Grade Ad    | iustment | · 0.0   |
| Pa                                                                                                                                           | ad Elevation:    | 0.0 feet       |       |          | Tieav    | y much   |                                | 000      | Crado raj   | dotinont | 0.0     |
| Roa                                                                                                                                          | ad Elevation:    | 0.0 feet       |       | I        | Lane Eq  | uivalen  | t Distan                       | ce (in i | feet)       |          |         |
|                                                                                                                                              | Road Grade:      | 0.0%           |       |          |          | Auto     | os: 140.                       | 214      |             |          |         |
|                                                                                                                                              | Left View:       | -90.0 degre    | es    |          | Mediu    | m Truck  | ks: 140.                       | 151      |             |          |         |
|                                                                                                                                              | Right View:      | 90.0 degre     | es    |          | Heav     | y Truck  | ks: 140.                       | 157      |             |          |         |
|                                                                                                                                              |                  |                |       |          |          |          |                                |          |             |          |         |
|                                                                                                                                              |                  | Troffic Flow   |       | tonoo    | Finito   | Dood     | Fraar                          |          | Dorrior Att | an Dar   | m Atton |
| venicie i ype                                                                                                                                | REIVIEL          |                | DIS   | stance   | Finite   | Road     | Frest                          |          | Barrier Att | en Ber   | m Atten |
| Autos:         66.51         3.57           Medium Trucks:         77.72         -13.67           Heavy Trucks:         82.99         -17.62 |                  |                |       | -6.84    | 2        | -1.20    |                                | -1.07    | 0.0         | 000      | 0.000   |
| Autos: 66.51 3.57<br>Medium Trucks: 77.72 -13.67<br>Heavy Trucks: 82.99 -17.62                                                               |                  |                |       | -6.84    | 2        | -1.20    |                                | -1.15    | 0.0         | 000      | 0.000   |
| Heavy Trucks:                                                                                                                                | 82.99            | -17.62         |       | -6.82    | 2        | -1.20    |                                | -1.35    | 0.0         | 000      | 0.000   |
| Unmitigated Noise                                                                                                                            | e Levels (witho  | out Topo and   | barri | er atten | uation)  |          |                                |          |             | 1        |         |
| VehicleType                                                                                                                                  | Leq Peak Hou     | r Leq Day      | /     | Leq E    | vening   | Leq      | Night                          |          | Ldn         | Cl       | VEL     |
| Autos:                                                                                                                                       | 62.              | 1              | 60.2  |          | 58.4     |          | 52.3                           | 3        | 61.0        | )        | 61.6    |
| Medium Trucks:                                                                                                                               | 56.              | 0              | 54.5  |          | 48.2     |          | 46.6                           | 6        | 55.1        |          | 55.3    |
| Heavy Trucks:                                                                                                                                | 57.              | 4              | 55.9  |          | 46.9     |          | 48.1                           |          | 56.5        | 5        | 56.6    |
| Vehicle Noise:                                                                                                                               | 64.              | 1              | 62.3  |          | 59.1     |          | 54.5                           | 5        | 63.0        | )        | 63.5    |
| Centerline Distan                                                                                                                            | ce to Noise Co   | ntour (in feet | )     |          |          |          |                                |          |             |          |         |
|                                                                                                                                              |                  |                |       | 70 c     | dBA      | 65       | dBA                            | 6        | 60 dBA      | 55       | dBA     |
|                                                                                                                                              |                  |                | Ldn:  | 50       | 0        | 1        | 08                             |          | 233         | 5        | 02      |
|                                                                                                                                              |                  | C              | NEL:  | 54       | 4        | 1        | 16                             |          | 250         | 5        | 38      |

Scenario: Existing Without Project Road Name: Lincoln Bl. Road Segment: s/o W. Washington Bl.

|                   | 3, 5                                                                                             |                |            |           |                   |           |            |             |          |         |
|-------------------|--------------------------------------------------------------------------------------------------|----------------|------------|-----------|-------------------|-----------|------------|-------------|----------|---------|
| SITE              | SPECIFIC INP                                                                                     | UT DATA        |            |           | N                 |           | NODE       |             | S        |         |
| Highway Data      |                                                                                                  |                |            | Site Cor  | ditions           | (Hard =   | 10, Sc     | oft = 15)   |          |         |
| Average Daily     | Traffic (Adt): 40                                                                                | ,800 vehicles  |            |           |                   |           | Autos:     | 15          |          |         |
| Peak Hour         | <sup>-</sup> Percentage:                                                                         | 10%            |            | Me        | dium Tru          | ucks (2 A | Axles):    | 15          |          |         |
| Peak H            | Hour Volume: 4                                                                                   | ,080 vehicles  |            | He        | avy Truc          | cks (3+ A | Axles):    | 15          |          |         |
| Ve                | hicle Speed:                                                                                     | 40 mph         |            | Vehicle   | Miv               |           |            |             |          |         |
| Near/Far La       | ane Distance:                                                                                    | 82 feet        |            | Veh       | icleType          |           | Dav        | Evenina     | Niaht    | Daily   |
| Site Data         |                                                                                                  |                |            | VOII      |                   | Autos:    | 77 5%      | 12.9%       | 9.6%     | 97 42%  |
|                   | • • • • • •                                                                                      |                |            |           | r<br>edium Ti     | rucks:    | 84.8%      | 4 9%        | 10.3%    | 1 84%   |
| Ba                | rrier Height:                                                                                    | 0.0 feet       |            |           | Heavy Ti          | ucks:     | 86 5%      | 2.7%        | 10.070   | 0.74%   |
| Barrier Type (0-V | Vall, 1-Berm):                                                                                   | 0.0            |            |           | icavy II          | ucho.     | 00.070     | 2.170       | 10.070   | 0.7470  |
| Centerline Di     | ist. to Barrier:                                                                                 | 136.0 feet     |            | Noise Se  | ource El          | evation   | s (in fe   | eet)        |          |         |
| Centerline Dist.  | to Observer:                                                                                     | 146.0 feet     |            |           | Autos             | s: 0.     | 000        |             |          |         |
| Barrier Distance  | to Observer:                                                                                     | 10.0 feet      |            | Mediu     | m Truck           | s: 2.2    | 297        |             |          |         |
| Observer Height   | (Above Pad):                                                                                     | 5.0 feet       |            | Heav      | y Truck           | s: 8.     | 006        | Grade Ad    | justment | : 0.0   |
|                   | ad Elevation:                                                                                    | 0.0 feet       |            | Lano Eo   | uivalon           | Distan    | co (in i   | foot)       |          |         |
| RO                | au Elevation:                                                                                    |                |            | LaneLy    | Auto              | 2 140     | 21 A       |             |          |         |
|                   | Road Grade.                                                                                      | 0.0%           | -          | Modiu     | Aulos<br>m Trucki | 5. 140.   | 214<br>151 |             |          |         |
|                   | Leit View.                                                                                       | -90.0 degrees  | 5          | Hoa       | M Truck           | 5. 140.   | 151        |             |          |         |
|                   | Right view.                                                                                      | 90.0 degrees   | 5          | Tiear     | y much            | 5. 140.   | 157        |             |          |         |
| FHWA Noise Mod    | lel Calculations                                                                                 |                |            |           |                   |           |            |             |          |         |
| VehicleType       | REMEL 1                                                                                          | raffic Flow    | Distance   | Finite    | Road              | Fresr     | nel        | Barrier Att | en Ber   | m Atten |
| Autos:            | 66.51                                                                                            | 4.67           | -6         | .82       | -1.20             |           | -1.07      | 0.0         | 000      | 0.000   |
| Medium Trucks:    | 77.72                                                                                            | -12.57         | -6         | .82       | -1.20             |           | -1.15      | 0.0         | 000      | 0.000   |
| Heavy Trucks:     | Medium Trucks:         77.72         -12.57           Heavy Trucks:         82.99         -16.53 |                |            | .82       | -1.20             |           | -1.35      | 0.0         | 000      | 0.000   |
| Unmitigated Nois  | e l evels (withou                                                                                | ut Topo and h  | arrier att | enuation) |                   |           |            |             |          |         |
| VehicleType       | Lea Peak Hour                                                                                    | Lea Dav        | Lea        | Evenina   | Lea               | Niaht     |            | Ldn         | C        | NEL     |
| Autos:            | 63.2                                                                                             | 6              | 1.3        |           |                   | 53.4      | 1          | 62.1        |          | 62.7    |
| Medium Trucks:    | 57.1                                                                                             | 5              | 5.6        | 49.3      |                   | 47.7      | 7          | 56.2        | 2        | 56.4    |
| Heavy Trucks:     | 58.4                                                                                             | 5              | 7.0        | 48.0      |                   | 49.2      | 2          | 57.6        | 5        | 57.7    |
| Vehicle Noise:    | 65.2                                                                                             | 6              | 3.4        | 60.2      |                   | 55.6      | 6          | 64.1        | 1        | 64.6    |
| Centerline Distan | ce to Noise Con                                                                                  | tour (in feet) |            |           |                   |           |            |             |          |         |
| L                 |                                                                                                  | , ,            | 7          | 0 dBA     | 65                | dBA       | 6          | 60 dBA      | 55       | dBA     |
|                   |                                                                                                  | L              | .dn:       | 59        | 1:                | 28        | 1          | 276         | 5        | 94      |
|                   |                                                                                                  | CN             | EL:        | 64        | 1:                | 37        |            | 295         | 6        | 36      |
|                   |                                                                                                  |                |            |           |                   |           |            |             |          |         |

Scenario: Existing Without Project Road Name: Lincoln Bl. Road Segment: n/o Jefferson Wy.

|                                                                                                                                              |                   | ,              |       |          |                  |                 |                    |            |              |                |          |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|-------|----------|------------------|-----------------|--------------------|------------|--------------|----------------|----------|
| SITE                                                                                                                                         | SPECIFIC INF      | PUT DATA       |       |          |                  | I               |                    | NODE       |              | S              |          |
| Highway Data                                                                                                                                 |                   |                |       | ,        | Site Con         | ditions         | s (Hard =          | 10, Sc     | oft = 15)    |                |          |
| Average Daily                                                                                                                                | Traffic (Adt): 41 | 1,600 vehicle  | s     |          |                  |                 |                    | Autos:     | 15           |                |          |
| Peak Hour                                                                                                                                    | Percentage:       | 10%            |       |          | Me               | dium Ti         | rucks (2 /         | Axles):    | 15           |                |          |
| Peak F                                                                                                                                       | lour Volume: 4    | 4,160 vehicle  | s     |          | He               | avy Tru         | ıcks (3+ /         | Axles):    | 15           |                |          |
| Ve                                                                                                                                           | hicle Speed:      | 40 mph         |       | -        | Vohiala          | Mix             |                    |            |              |                |          |
| Near/Far La                                                                                                                                  | ne Distance:      | 82 feet        |       |          | Vehicie I        | icleTvn         | Δ                  | Dav        | Evening      | Niaht          | Daily    |
| Site Data                                                                                                                                    |                   |                |       |          | v 0/11           | υстур           | Autos              | 77 50/     | 12 Q0/       | 0 60/          | 07 / 20/ |
|                                                                                                                                              | • • • • • •       |                |       |          | ٨٨               | dium 7          | rucke <sup>.</sup> | 84 8%      | <u>4</u> Q%  | 9.0 %<br>10 3% | 1 84%    |
| Ba                                                                                                                                           | rrier Height:     | 0.0 feet       |       |          | IVIC<br>L        | leavy 7         | Trucke             | 86 5%      | 2 7 70/2     | 10.0%          | 0 7/0/   |
| Barrier Type (0-W                                                                                                                            | vall, 1-Berm):    | 0.0            |       |          |                  |                 |                    | 00.070     | 2.1 /0       | 10.0 /0        | 0.74/0   |
| Centerline Di                                                                                                                                | st. to Barrier:   | 136.0 feet     |       |          | Noise Sc         | ource E         | Elevation          | s (in fe   | eet)         |                |          |
| Centerline Dist.                                                                                                                             | to Ubserver:      | 146.0 feet     |       |          |                  | Auto            | os: 0.             | 000        |              |                |          |
| Barrier Distance                                                                                                                             | to Ubserver:      | 10.0 feet      |       |          | Mediur           | n Trucl         | ks: 2.             | 297        |              |                |          |
| Observer Height                                                                                                                              | (ADOVE Pad):      | 5.0 feet       |       |          | Heav             | y Trucl         | ks: 8.             | 006        | Grade Adj    | iustment.      | 0.0      |
|                                                                                                                                              | au Elevation:     | U.U feet       |       | -        | l ano Ecu        | uivalor         | nt Distan          | co (in t   | foot)        |                |          |
| Ro                                                                                                                                           | au Elevation:     |                |       |          | Lane Equ         |                 |                    | 21 /       |              |                |          |
|                                                                                                                                              | Kuad Grade:       | 0.0%           |       |          | Madiu            | AUIO<br>D Truci | 13.140.            | ∠14<br>151 |              |                |          |
|                                                                                                                                              | Leit View:        | -90.0 degree   | es    |          | Ivieuiur<br>Loou | n Truck         | NS. 140.           | 151        |              |                |          |
|                                                                                                                                              | RIGHT VIEW.       | 90.0 aegree    | 85    |          | neav             | y TTUCH         | no. 140.           | 107        |              |                |          |
| FHWA Noise Mod                                                                                                                               | el Calculations   |                |       |          |                  |                 |                    |            |              |                |          |
| VehicleType                                                                                                                                  | REMEL             | Traffic Flow   | Dis   | stance   | Finite           | Road            | Fresr              | nel        | Barrier Atte | en Ber         | m Atten  |
| Autos:         66.51         4.75           Medium Trucks:         77.72         -12.49           Heavy Trucks:         82.99         -16.44 |                   |                |       | -6.8     | 2                | -1.20           |                    | -1.07      | 0.0          | 000            | 0.000    |
| Autos:         66.51         4.75           Medium Trucks:         77.72         -12.49           Heavy Trucks:         82.99         -16.44 |                   |                | -6.8  | 2        | -1.20            |                 | -1.15              | 0.0        | 000          | 0.000          |          |
| Heavy Trucks:                                                                                                                                | 82.99             | -16.44         |       | -6.8     | 2                | -1.20           |                    | -1.35      | 0.0          | 000            | 0.000    |
| Unmitigated Nois                                                                                                                             | e Levels (witho   | ut Topo and    | barri | er atten | uation)          |                 |                    |            |              |                |          |
| VehicleType                                                                                                                                  | Leq Peak Hour     | Leq Day        | /     | Leq E    | vening           | Leq             | n Night            |            | Ldn          | CI             | VEL      |
| Autos:                                                                                                                                       | 63.2              | 2              | 61.3  |          | 59.6             |                 | 53.5               | 5          | 62.1         |                | 62.8     |
| Medium Trucks:                                                                                                                               | 57.2              | 2              | 55.7  |          | 49.3             |                 | 47.8               | 3          | 56.3         | 3              | 56.5     |
| Heavy Trucks:                                                                                                                                | 58.5              | 5              | 57.1  |          | 48.1             |                 | 49.3               | 3          | 57.7         | /              | 57.8     |
| Vehicle Noise:                                                                                                                               | 65.2              | 2              | 63.5  |          | 60.2             |                 | 55.7               | 7          | 64.2         | 2              | 64.7     |
| Centerline Distan                                                                                                                            | ce to Noise Cor   | ntour (in feet | )     |          |                  |                 |                    |            |              |                |          |
|                                                                                                                                              |                   |                |       | 70 (     | dBA              | 65              | i dBA              | 6          | 60 dBA       | 55             | dBA      |
|                                                                                                                                              |                   |                | Ldn:  | 6        | 0                | 1               | 130                |            | 279          | 6              | 02       |
|                                                                                                                                              |                   | Cl             | NEL:  | 6        | 4                | 1               | 139                |            | 299          | 6              | 45       |
|                                                                                                                                              |                   |                |       |          |                  |                 |                    |            |              |                |          |

Scenario: Existing Without Project Road Name: Lincoln Bl. Road Segment: s/o Jefferson Wy.

| rioud obymo                                                                                                                                                        | na 3/0 001101301 | · • • y.       |             |          |                |              |          |          |             |           |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|-------------|----------|----------------|--------------|----------|----------|-------------|-----------|--------------|
| SITE                                                                                                                                                               | SPECIFIC IN      | PUT DATA       |             |          |                | Ν            | IOISE    | MODE     |             | s         |              |
| Highway Data                                                                                                                                                       |                  |                |             |          | Site Con       | ditions      | (Hard    | = 10, S  | oft = 15)   |           |              |
| Average Daily                                                                                                                                                      | Traffic (Adt): 4 | 1,600 vehicles | 5           |          |                |              |          | Autos:   | 15          |           |              |
| Peak Hour                                                                                                                                                          | · Percentage:    | 10%            |             |          | Me             | dium Tr      | ucks (2  | Axles):  | 15          |           |              |
| Peak H                                                                                                                                                             | lour Volume:     | 4,160 vehicles | 6           |          | He             | avy Tru      | cks (3+  | Axles):  | 15          |           |              |
| Ve                                                                                                                                                                 | hicle Speed:     | 40 mph         |             | _        | Vehicle        | Mix          |          |          |             |           |              |
| Near/Far La                                                                                                                                                        | ne Distance:     | 82 feet        |             | -        | Veh            | icleType     | )        | Day      | Evening     | Night     | Daily        |
| Site Data                                                                                                                                                          |                  |                |             |          |                | 1            | Autos:   | 77.5%    | 5 12.9%     | 9.6%      | 97.42%       |
| Ba                                                                                                                                                                 | rrier Heiaht:    | 0.0 feet       |             |          | Me             | edium T      | rucks:   | 84.8%    | 4.9%        | 10.3%     | 1.84%        |
| Barrier Type (0-V                                                                                                                                                  | Vall, 1-Berm):   | 0.0            |             |          | ŀ              | leavy T      | rucks:   | 86.5%    | 5 2.7%      | 10.8%     | 0.74%        |
| Centerline Di                                                                                                                                                      | ist. to Barrier: | 136.0 feet     |             | -        | Noice Se       | ouroo E      | lovatio  | no (in f | 001         |           |              |
| Centerline Dist.                                                                                                                                                   | to Observer:     | 146.0 feet     |             | _        | Noise Sc       |              |          |          | eet)        |           |              |
| Barrier Distance                                                                                                                                                   | to Observer:     | 10.0 feet      |             |          | Madiu          | AUIO<br>AUIO | S. U     | .000     |             |           |              |
| Observer Height                                                                                                                                                    | (Above Pad):     | 5.0 feet       |             |          | Mealui         | T I TUCK     | S: 2     | .297     | Grada Ad    | iustmont  | μ <u>Ο</u> Ο |
| P                                                                                                                                                                  | ad Elevation:    | 0.0 feet       |             |          | Heav           | у тиск       | S: 8     | .006     | Grade Au    | Justinent | . 0.0        |
| Ro                                                                                                                                                                 | ad Elevation:    | 0.0 feet       |             |          | Lane Eq        | uivalen      | t Distal | nce (in  | feet)       |           |              |
|                                                                                                                                                                    | Road Grade:      | 0.0%           |             |          |                | Auto         | s: 140   | .214     |             |           |              |
|                                                                                                                                                                    | Left View:       | -90.0 degree   | es          |          | Mediui         | m Truck      | s: 140   | .151     |             |           |              |
|                                                                                                                                                                    | Right View:      | 90.0 degree    | es          |          | Heav           | y Truck      | s: 140   | .157     |             |           |              |
|                                                                                                                                                                    |                  |                |             |          |                |              |          |          |             |           |              |
| FHWA NOISE Mod                                                                                                                                                     |                  | Traffia Flarr  | Die         |          | <b>F</b> inite | Deed         | <b>-</b> | mal      | Dennie n Au |           |              |
| VehicleType     REMEL     Traffic Flow     Dist       Autos:     66.51     4.75       Medium Trucks:     77.72     -12.49       Heavy Trucks:     82.99     -16.44 |                  |                |             | tance    | Finite         | Road         | Fres     | inei     | Barrier Att | en Bei    | rm Atten     |
| Autos:         66.51         4.75           Medium Trucks:         77.72         -12.49           Heavy Trucks:         82.99         -16.44                       |                  |                |             | -6.8     | 52             | -1.20        |          | -1.07    | 0.0         | 000       | 0.000        |
| Autos:         66.51         4.75           Medium Trucks:         77.72         -12.49           Heavy Trucks:         82.99         -16.44                       |                  |                | 5.0-<br>0.0 |          | -1.20          |              | -1.15    | 0.0      |             | 0.000     |              |
| Heavy Trucks:                                                                                                                                                      | 82.99            | -16.44         |             | -6.8     | 52             | -1.20        |          | -1.35    | 0.0         | 000       | 0.000        |
| Unmitigated Nois                                                                                                                                                   | e Levels (witho  | ut Topo and    | barrie      | er atter | nuation)       |              |          |          |             | 1         |              |
| VehicleType                                                                                                                                                        | Leq Peak Hour    | Leq Day        | ,           | Leq E    | vening         | Leq          | Night    |          | Ldn         | С         | NEL          |
| Autos:                                                                                                                                                             | 63.2             | 2              | 61.3        |          | 59.6           |              | 53       | .5       | 62.2        | 1         | 62.8         |
| Medium Trucks:                                                                                                                                                     | 57.2             | 2              | 55.7        |          | 49.3           |              | 47       | .8       | 56.3        | 3         | 56.5         |
| Heavy Trucks:                                                                                                                                                      | 58.5             | 5              | 57.1        |          | 48.1           |              | 49       | .3       | 57.7        | 7         | 57.8         |
| Vehicle Noise:                                                                                                                                                     | 65.2             | 2              | 63.5        |          | 60.2           |              | 55       | .7       | 64.2        | 2         | 64.7         |
| Centerline Distan                                                                                                                                                  | ce to Noise Col  | ntour (in feet | )           |          |                |              |          |          |             |           |              |
|                                                                                                                                                                    |                  |                |             | 70       | dBA            | 65           | dBA      | (        | 60 dBA      | 55        | dBA          |
|                                                                                                                                                                    |                  |                | Ldn:        | 6        | 60             | 1            | 30       |          | 279         | 6         | 602          |
|                                                                                                                                                                    |                  | CI             | VEL:        | 6        | 64             | 1            | 39       |          | 299         | 6         | 645          |
|                                                                                                                                                                    |                  |                |             |          |                |              |          |          |             |           |              |

Scenario: Existing Without Project Road Name: Lincoln Bl. Road Segment: n/o Maxella Av.

| SITE SPECIFIC INPUT DATA                                        |                                       |              |      |                                                                   | NOISE MODEL INPUTS                     |          |            |        |             |        |         |  |
|-----------------------------------------------------------------|---------------------------------------|--------------|------|-------------------------------------------------------------------|----------------------------------------|----------|------------|--------|-------------|--------|---------|--|
| Highway Data                                                    |                                       |              |      |                                                                   | Site Conditions (Hard = 10, Soft = 15) |          |            |        |             |        |         |  |
| Average Daily Traffic (Adt): 38,500 vehic                       |                                       |              | S    |                                                                   |                                        |          |            | Autos: | 15          |        |         |  |
| Peak Hour                                                       | 10%                                   |              |      | Me                                                                | dium Ti                                | rucks (2 | Axles):    | 15     |             |        |         |  |
| Peak H                                                          | 3,850 vehicles                        |              |      | Heavy Trucks (3+ Axles): 15                                       |                                        |          |            |        |             |        |         |  |
| Vehicle Speed: 40 mph                                           |                                       |              |      |                                                                   | Vehicle                                | Mix      |            |        |             |        |         |  |
| Near/Far Lane Distance:                                         |                                       | 82 feet      |      | _                                                                 | Veh                                    | icleTvp  | e          | Dav    | Evenina     | Niaht  | Dailv   |  |
| Site Data                                                       |                                       |              |      |                                                                   |                                        |          | Autos:     | 77.5%  | 12.9%       | 9.6%   | 97.42%  |  |
| Ba                                                              | 0.0 feet                              |              |      | Me                                                                | edium 1                                | rucks:   | 84.8%      | 4.9%   | 10.3%       | 1.84%  |         |  |
| Barrier Type (0-M                                               | 0.0                                   |              |      | ŀ                                                                 | leavy T                                | rucks:   | 86.5%      | 2.7%   | 10.8%       | 0.74%  |         |  |
| Centerline Di                                                   | 136.0 feet<br>146.0 feet<br>10.0 feet |              |      |                                                                   |                                        |          |            |        |             |        |         |  |
| Centerline Dist                                                 |                                       |              |      | Noise Source Elevations (in feet)                                 |                                        |          |            |        |             |        |         |  |
| Barrier Distance                                                |                                       |              |      | Autos: 0.000                                                      |                                        |          |            |        |             |        |         |  |
| Observer Height                                                 |                                       |              |      | Medium Trucks: 2.297<br>Heavy Trucks: 8.006 Grade Adjustment: 0.0 |                                        |          |            |        |             |        |         |  |
| Diserver neight                                                 |                                       |              |      |                                                                   |                                        |          |            |        |             |        |         |  |
| Ro                                                              |                                       |              |      | Lane Equivalent Distance (in feet)                                |                                        |          |            |        |             |        |         |  |
| 110                                                             | 0.0%                                  |              |      | Autos: 140.214                                                    |                                        |          |            |        |             |        |         |  |
|                                                                 | -90.0 degrees                         |              |      | Medium Trucks: 140.151                                            |                                        |          |            |        |             |        |         |  |
|                                                                 | 90.0 degrees                          |              |      | Heavy Trucks: 140.157                                             |                                        |          |            |        |             |        |         |  |
|                                                                 |                                       |              |      |                                                                   |                                        | <b>,</b> |            |        |             |        |         |  |
| FHWA Noise Mod                                                  |                                       |              |      |                                                                   |                                        |          |            |        |             |        |         |  |
| VehicleType                                                     | REMEL                                 | Traffic Flow | Dis  | stance                                                            | Finite                                 | Road     | Fres       | nel    | Barrier Att | en Ber | m Atten |  |
| Autos:                                                          | 66.51                                 | 4.42         | -6   |                                                                   | 32 -1.20                               |          |            | -1.07  | 0.0         | 000    | 0.000   |  |
| Medium Trucks: 77                                               |                                       | -12.82       |      | -6.8                                                              | 2                                      | -1.20    | 1.20 -1.15 |        | 0.000       |        | 0.000   |  |
| Heavy Trucks: 82.99                                             |                                       | -16.78       |      | -6.8                                                              | 2                                      | -1.20    | 20 -1.35   |        | 0.0         | 000    | 0.000   |  |
| Unmitigated Noise Levels (without Topo and barrier attenuation) |                                       |              |      |                                                                   |                                        |          |            |        |             |        |         |  |
| VehicleType                                                     | Leq Peak Hou                          | ir Leq Day   | /    | Leq E                                                             | vening                                 | Leg      | Night      |        | Ldn         | C      | NEL     |  |
| Autos:                                                          | 62                                    | 9 61.0       |      |                                                                   | 59.2                                   |          | 53.2       |        | 61.8        | 3      | 62.4    |  |
| Medium Trucks:                                                  | 56                                    | .9           | 55.4 |                                                                   | 49.0                                   | 47.5     |            | 5      | 55.9        | )      | 56.2    |  |
| Heavy Trucks:                                                   | 58                                    | .2 56.8      |      |                                                                   | 47.7                                   |          | 49.0       |        | 57.3        | 3      | 57.5    |  |
| Vehicle Noise:                                                  | 64                                    | 64.9 63.2    |      |                                                                   | 59.9                                   |          | 55.4       |        | 63.9        | )      | 64.3    |  |
| Centerline Distance to Noise Contour (in feet)                  |                                       |              |      |                                                                   |                                        |          |            |        |             |        |         |  |
|                                                                 |                                       |              |      | 70                                                                | dBA                                    | 65       | dBA        | 6      | 60 dBA      | 55     | dBA     |  |
|                                                                 |                                       |              | Ldn: | 5                                                                 | 57                                     | 1        | 23         |        | 265         | 5      | 72      |  |
|                                                                 |                                       | С            | NEL: | 6                                                                 | 61                                     | 1        | 32         |        | 284         | 6      | 12      |  |
|                                                                 |                                       |              |      |                                                                   |                                        |          |            |        |             |        |         |  |
Scenario: Existing Without Project Road Name: Lincoln Bl. Road Segment: s/o Maxella Av.

| SITE                    | SPECIFIC IN                    | IPUT DATA         |          |          |          |          | NOISE               | MODE      | L INPUT     | S         |         |
|-------------------------|--------------------------------|-------------------|----------|----------|----------|----------|---------------------|-----------|-------------|-----------|---------|
| Highway Data            |                                |                   |          |          | Site Con | ditions  | : (Hard =           | = 10, So  | oft = 15)   |           |         |
| Average Daily           | Traffic (Adt):                 | 44,200 vehicle    | S        |          |          |          |                     | Autos:    | 15          |           |         |
| Peak Hour               | · Percentage:                  | 10%               |          |          | Me       | dium Tr  | rucks (2            | Axles):   | 15          |           |         |
| Peak H                  | lour Volume:                   | 4,420 vehicle     | s        |          | He       | avy Tru  | ıcks (3+            | Axles):   | 15          |           |         |
| Ve                      | hicle Speed:                   | 40 mph            |          | _        | Vehicle  | Mix      |                     |           |             |           |         |
| Near/Far La             | ne Distance:                   | 82 feet           |          | -        | Veh      | icleTvne | e                   | Dav       | Evenina     | Niaht     | Daily   |
| Site Data               |                                |                   |          |          |          |          | Autos:              | 77.5%     | 12.9%       | 9.6%      | 97 42%  |
| Ba                      | wier Height.                   | 0.0 fact          |          |          | M        | edium T  | rucks:              | 84.8%     | 4.9%        | 10.3%     | 1.84%   |
| Ba<br>Barriar Tupo (0 M | Voll 1 Porm):                  |                   |          |          | 1        | -leavv T | rucks:              | 86.5%     | 2.7%        | 10.8%     | 0.74%   |
| Contorlino Di           | ist to Barrior:                | 0.0<br>136.0 foot |          | _        |          |          |                     | 001070    | ,0          |           | •••••   |
| Centerline Di           | to Observer:                   | 136.0 feet        |          | _        | Noise So | ource E  | levatio             | ns (in fe | eet)        |           |         |
| Barrier Distance        | to Observer:                   | 140.0 feet        |          |          |          | Auto     | os: 0               | .000      |             |           |         |
| Observer Height         | (Above Pad):                   | 5.0 foot          |          |          | Mediu    | m Truck  | ks: 2               | .297      |             |           |         |
| Diserver height         | (ADOVE Fau).                   | 5.0 feet          |          |          | Heav     | y Truck  | ks: 8               | .006      | Grade Ad    | iustment. | 0.0     |
| Ro                      | ad Elevation:<br>ad Elevation: | 0.0 feet          |          | _        | Lane Eo  | uivalen  | t Distar            | nce (in   | feet)       |           |         |
|                         | Road Grade:                    |                   |          | -        |          | Auto     | 140                 | 214       | ,           |           |         |
|                         | Left View:                     | -90.0 degre       | 00       |          | Mediu    | m Truck  | cs = 140            | 151       |             |           |         |
|                         | Right View:                    | 90.0 degre        | 63<br>69 |          | Heav     | v Truck  | (s <sup>.</sup> 140 | 157       |             |           |         |
|                         | ragin view.                    | JU.U degre        | 00       |          | , iou    | y maon   |                     |           |             |           |         |
| FHWA Noise Mod          | lel Calculation                | s                 |          | I        |          |          |                     |           |             |           |         |
| VehicleType             | REMEL                          | Traffic Flow      | Dis      | stance   | Finite   | Road     | Fres                | nel       | Barrier Att | en Ber    | m Atten |
| Autos:                  | 66.51                          | 5.01              |          | -6.8     | 2        | -1.20    |                     | -1.07     | 0.0         | 000       | 0.000   |
| Medium Trucks:          | 77.72                          | -12.22            |          | -6.8     | 2        | -1.20    |                     | -1.15     | 0.0         | 000       | 0.000   |
| Heavy Trucks:           | 82.99                          | -16.18            |          | -6.8     | 2        | -1.20    |                     | -1.35     | 0.0         | 000       | 0.000   |
| Unmitigated Nois        | e Levels (with                 | out Topo and      | barri    | er atter | nuation) |          |                     |           |             |           |         |
| VehicleType             | Leg Peak Hou                   | Ir Leq Day        | /        | Leg E    | vening   | Leq      | Night               |           | Ldn         | CI        | VEL     |
| Autos:                  | . 63                           | .5                | 61.6     |          | 59.8     |          | 53.                 | 8         | 62.4        | ŀ         | 63.0    |
| Medium Trucks:          | 57                             | .5                | 56.0     |          | 49.6     |          | 48.                 | 1         | 56.5        | 5         | 56.8    |
| Heavy Trucks:           | 58                             | .8                | 57.4     |          | 48.3     |          | 49.                 | 6         | 57.9        | )         | 58.1    |
| Vehicle Noise:          | 65                             | .5                | 63.8     |          | 60.5     |          | 56.                 | 0         | 64.5        | 5         | 64.9    |
| Centerline Distan       | ce to Noise Co                 | ontour (in feet   | ;)       |          |          |          |                     |           |             |           |         |
| L                       |                                | •                 |          | 70       | dBA      | 65       | dBA                 | 6         | 60 dBA      | 55        | dBA     |
|                         |                                |                   | Ldn:     | 6        | 63       | 1        | 35                  |           | 291         | 6         | 27      |
|                         |                                | C                 | NEL:     | 6        | 67       | 1        | 45                  |           | 311         | 6         | 71      |
|                         |                                |                   |          |          |          |          |                     |           |             |           |         |

Scenario: Existing Without Project Road Name: Lincoln Bl. Road Segment: s/o Marina Expy. Project Name: Thatcher Job Number: 12185

|                          |                  | 17                 |       |               |                                        |          |                                       |                 |             |          |         |  |  |
|--------------------------|------------------|--------------------|-------|---------------|----------------------------------------|----------|---------------------------------------|-----------------|-------------|----------|---------|--|--|
| SITE                     | SPECIFIC IN      | IPUT DATA          |       |               |                                        | ſ        | NOISE                                 | MODE            |             | S        |         |  |  |
| Highway Data             |                  |                    |       |               | Site Conditions (Hard = 10, Soft = 15) |          |                                       |                 |             |          |         |  |  |
| Average Daily            | Traffic (Adt): 3 | 34,400 vehicle     | s     |               |                                        |          |                                       | Autos:          | 15          |          |         |  |  |
| Peak Hour                | Percentage:      | 10%                |       |               | Me                                     | dium Ti  | rucks (2                              | Axles):         | 15          |          |         |  |  |
| Peak H                   | our Volume:      | 3,440 vehicle      | s     |               | Hea                                    | avy Tru  | ıcks (3+                              | Axles):         | 15          |          |         |  |  |
| Ve                       | hicle Speed:     | 40 mph             |       | -             | Vahiala                                | /i.v     | , , , , , , , , , , , , , , , , , , , | ,               |             |          |         |  |  |
| Near/Far La              | ne Distance:     | 82 feet            |       | -             | venicie l                              |          | •                                     | Devi            | Evoning     | Nicht    | Deily   |  |  |
| Site Data                |                  |                    |       |               | veni                                   | сіе і ур |                                       |                 |             |          |         |  |  |
| Site Data                |                  |                    |       |               | ۸ ۸۰                                   | dium 7   | AUIOS:                                | //.5%<br>0/ 00/ | 12.9%       | 9.0%     | 91.42%  |  |  |
| Ba                       | rrier Height:    | 0.0 feet           |       |               | IVIE                                   | aium I   | TUCKS:                                | 04.8%           | 4.9%        | 10.3%    | 1.84%   |  |  |
| Barrier Type (0-W        | Vall, 1-Berm):   | 0.0                |       |               | F                                      | ieavy I  | TUCKS:                                | 80.5%           | o 2.1%      | 10.8%    | 0.74%   |  |  |
| Centerline Di            | ist. to Barrier: | 136.0 feet         |       |               | Noise Sc                               | ource E  | levatio                               | ns (in f        | eet)        |          |         |  |  |
| Centerline Dist.         | to Observer:     | 146.0 feet         |       |               |                                        | Auto     | os: (                                 | 0.000           | *           |          |         |  |  |
| Barrier Distance         | to Observer:     | 10.0 feet          |       |               | Mediur                                 | n Truck  | ks: 2                                 | 2.297           |             |          |         |  |  |
| Observer Height          | (Above Pad):     | 5.0 feet           |       |               | Heav                                   | y Truck  | ks: E                                 | 3.006           | Grade Ad    | justment | : 0.0   |  |  |
| P                        | ad Elevation:    | 0.0 feet           |       | -             |                                        |          |                                       | -               |             |          |         |  |  |
| Ro                       | ad Elevation:    | 0.0 feet           |       | -             | Lane Equ                               | uivalen  | t Dista                               | nce (in         | teet)       |          |         |  |  |
|                          | Road Grade:      | 0.0%               |       |               |                                        | Auto     | os: 140                               | ).214           |             |          |         |  |  |
|                          | Left View:       | -90.0 degre        | es    |               | Mediur                                 | n Truck  | ks: 140                               | 0.151           |             |          |         |  |  |
|                          | Right View:      | 90.0 degre         | es    |               | Heav                                   | y Truck  | ks: 140                               | ).157           |             |          |         |  |  |
|                          | lal Calavlatica  | •                  |       |               |                                        |          |                                       |                 |             |          |         |  |  |
| VohioloTupo              |                  | S<br>Traffic Elour | ייט:  | tanaa         | Einita                                 | Dood     | Ero                                   | anal            | Barriar Att | on Po    | m Atton |  |  |
| veriicie i ype           |                  |                    | DIS   | siance<br>e o |                                        | 1 20     | ries                                  |                 |             |          |         |  |  |
| Autos:<br>Modium Trucker | 00.01            | 3.93               |       | 6.0-          | ≥<br>2                                 | -1.20    |                                       | -1.07           | 0.0         |          | 0.000   |  |  |
|                          | 11.12            | -13.31             |       | 8.0-<br>0.0   | 2                                      | -1.20    |                                       | -1.15           | 0.0         |          | 0.000   |  |  |
|                          | 82.99            | -17.27             |       | -6.8          |                                        | -1.20    |                                       | -1.35           | 0.0         | 000      | 0.000   |  |  |
| Unmitigated Nois         | e Levels (with   | out Topo and       | barri | er atter      | nuation)                               |          |                                       |                 |             |          |         |  |  |
| VehicleType              | Leq Peak Hou     | ır Leq Day         | /     | Leq E         | vening                                 | Leq      | Night                                 |                 | Ldn         | С        | NEL     |  |  |
| Autos:                   | 62               | .4                 | 60.5  |               | 58.8                                   |          | 52                                    | .7              | 61.3        | 3        | 61.9    |  |  |
| Medium Trucks:           | 56               | .4                 | 54.9  |               | 48.5                                   |          | 47                                    | .0              | 55.4        | 1        | 55.7    |  |  |
| Heavy Trucks:            | 57               | .7                 | 56.3  |               | 47.3                                   |          | 48                                    | .5              | 56.9        | Э        | 57.0    |  |  |
| Vehicle Noise:           | 64               | .4                 | 62.7  |               | 59.4                                   |          | 54                                    | .9              | 63.4        | 1        | 63.8    |  |  |
| Centerline Distan        | ce to Noise Co   | ontour (in feet    | ;)    |               |                                        |          |                                       |                 |             |          |         |  |  |
| L                        |                  | •                  | -     | 70            | dBA                                    | 65       | dBA                                   | 6               | 60 dBA      | 55       | dBA     |  |  |
|                          |                  |                    | Ldn:  | 5             | 53                                     | 1        | 14                                    |                 | 246         | 5        | 530     |  |  |
|                          |                  | Ci                 | NEL:  | 5             | 57                                     | 1        | 22                                    |                 | 264         | 5        | 68      |  |  |
|                          |                  | -                  |       | -             |                                        |          |                                       |                 |             | -        |         |  |  |

Scenario: Existing Without Project Road Name: W. Washington Bl. Road Segment: w/o Lincoln Bl. Project Name: Thatcher Job Number: 12185

| SITE              | SPECIFIC IN              | PUT DATA       |        |          |           | I       | NOISE             | MODE     |             | S        |         |
|-------------------|--------------------------|----------------|--------|----------|-----------|---------|-------------------|----------|-------------|----------|---------|
| Highway Data      |                          |                |        |          | Site Con  | ditions | (Hard             | = 10, Se | oft = 15)   |          |         |
| Average Daily     | Traffic (Adt): 2         | 3,700 vehicle  | s      |          |           |         |                   | Autos:   | 15          |          |         |
| Peak Hour         | <sup>.</sup> Percentage: | 10%            |        |          | Me        | dium Ti | rucks (2          | Axles):  | 15          |          |         |
| Peak H            | our Volume:              | 2,370 vehicle  | s      |          | He        | avy Tru | icks (3+          | Axles):  | 15          |          |         |
| Ve                | hicle Speed:             | 35 mph         |        | -        | Vahiala   | 1.      |                   |          |             |          |         |
| Near/Far La       | ane Distance:            | 46 feet        |        | -        | Venicie i | VIIX    | •                 | Dav      | Evening     | Nicht    | Daily   |
| 0:42 Data         |                          |                |        |          | ven       | cieryp  |                   |          | Evening     |          | Daily   |
| Site Data         |                          |                |        |          |           | !' 7    | Autos:            | 11.5%    | 12.9%       | 9.6%     | 97.42%  |
| Ba                | rrier Height:            | 0.0 feet       |        |          | IVI6      | aium i  | rucks:            | 84.8%    | 6 4.9%      | 10.3%    | 1.84%   |
| Barrier Type (0-V | Vall, 1-Berm):           | 0.0            |        |          | F         | leavy I | rucks:            | 86.5%    | b 2.7%      | 10.8%    | 0.74%   |
| Centerline Di     | ist. to Barrier:         | 110.0 feet     |        | -        | Noise So  | ource E | levatio           | ns (in f | eet)        |          |         |
| Centerline Dist.  | to Observer:             | 120.0 feet     |        | -        |           | Auto    | os: (             | .000     | ,           |          |         |
| Barrier Distance  | to Observer:             | 10.0 feet      |        |          | Mediu     | n Truck | (s <sup>.</sup> 2 | .297     |             |          |         |
| Observer Height   | (Above Pad):             | 5.0 feet       |        |          | Heav      | v Truck | (s. 2             | 006      | Grade Ad    | iustment | : 0.0   |
| P                 | ad Elevation:            | 0.0 feet       |        | _        | nouv      | y maon  |                   | .000     |             |          |         |
| Ro                | ad Elevation:            | 0.0 feet       |        |          | Lane Eq   | uivalen | t Dista           | nce (in  | feet)       |          |         |
|                   | Road Grade:              | 0.0%           |        |          |           | Auto    | os: 117           | .881     |             |          |         |
|                   | Left View:               | -90.0 degree   | es     |          | Mediur    | n Trucł | (s: 117           | .806     |             |          |         |
|                   | Right View:              | 90.0 degre     | es     |          | Heav      | y Trucł | (s: 117           | .814     |             |          |         |
|                   |                          |                |        |          |           |         |                   |          |             |          |         |
| FHWA Noise Mod    | lel Calculations         |                |        |          |           |         |                   |          |             |          | • • •   |
| Vehicle I ype     | REMEL                    | Traffic Flow   | Dis    | stance   | Finite    | Road    | Fres              | inel     | Barrier Att | en Ber   | m Atten |
| Autos:            | 64.30                    | 2.89           |        | -5.6     | 59        | -1.20   |                   | -1.05    | 0.0         | 000      | 0.000   |
| Medium Trucks:    | 75.75                    | -14.35         |        | -5.6     | 59        | -1.20   |                   | -1.15    | 0.0         | 000      | 0.000   |
| Heavy Trucks:     | 81.57                    | -18.31         |        | -5.6     | 69        | -1.20   |                   | -1.40    | 0.0         | 000      | 0.000   |
| Unmitigated Nois  | e Levels (witho          | ut Topo and    | barrie | er attei | nuation)  |         |                   |          |             |          |         |
| VehicleType       | Leq Peak Hour            | · Leq Day      | /      | Leq E    | vening    | Leq     | Night             |          | Ldn         | Cl       | NEL     |
| Autos:            | 60.3                     | 3              | 58.4   | -        | 56.6      | -       | 50                | .6       | 59.2        | 2        | 59.8    |
| Medium Trucks:    | 54.                      | 5              | 53.0   |          | 46.6      |         | 45                | .1       | 53.6        | 6        | 53.8    |
| Heavy Trucks:     | 56.4                     | 4              | 55.0   |          | 45.9      |         | 47                | 2        | 55.5        | 5        | 55.6    |
| Vehicle Noise:    | 62.                      | 5              | 60.8   |          | 57.4      |         | 53                | .0       | 61.5        | 5        | 61.9    |
| Centerline Distan | ce to Noise Co           | ntour (in feet | )      |          |           |         |                   |          |             |          |         |
| L                 |                          | • •            |        | 70       | dBA       | 65      | dBA               | (        | 60 dBA      | 55       | dBA     |
|                   |                          |                | Ldn:   | 3        | 33        |         | 70                |          | 151         | 3        | 26      |
|                   |                          | Cl             | NEL:   | 3        | 35        |         | 75                |          | 162         | 3        | 48      |
|                   |                          |                |        |          |           |         |                   |          |             | -        |         |

Scenario: Existing Without Project Road Name: W. Washington Bl. Road Segment: e/o Lincoln Bl.

|                                  |                 | 1          |           |                     |            |          |             |          |         |
|----------------------------------|-----------------|------------|-----------|---------------------|------------|----------|-------------|----------|---------|
| SITE SPECIFIC INP                | UT DATA         |            | <u> </u>  | ۲<br>               |            | IODE     |             | 5        |         |
| Highway Data                     |                 |            | Site Con  | ditions             | (Hard =    | 10, Sc   | oft = 15)   |          |         |
| Average Daily Traffic (Adt): 22  | ,700 vehicles   |            |           |                     | A          | Autos:   | 15          |          |         |
| Peak Hour Percentage:            | 10%             |            | Me        | dium Tr             | rucks (2 A | xles):   | 15          |          |         |
| Peak Hour Volume: 2              | ,270 vehicles   |            | He        | avy Tru             | cks (3+ A  | xles):   | 15          |          |         |
| Vehicle Speed:                   | 35 mph          | _          | Vehicle I | Mix                 |            |          |             |          |         |
| Near/Far Lane Distance:          | 46 feet         | _          | Veh       | icleType            | e i        | Day      | Evening     | Night    | Daily   |
| Site Data                        |                 |            |           |                     | Autos:     | 77.5%    | 12.9%       | 9.6%     | 97.42%  |
| Barrier Height:                  | 0.0 feet        |            | Me        | edium T             | rucks:     | 34.8%    | 4.9%        | 10.3%    | 1.84%   |
| Barrier Type (0-Wall, 1-Berm):   | 0.0             |            | ŀ         | <del>l</del> eavy T | rucks:     | 36.5%    | 2.7%        | 10.8%    | 0.74%   |
| Centerline Dist. to Barrier:     | 110.0 feet      | _          | Noise Sc  | ource F             | levations  | : (in fe | pet)        |          |         |
| Centerline Dist. to Observer:    | 120.0 feet      |            |           |                     |            |          |             |          |         |
| Barrier Distance to Observer:    | 10.0 feet       |            | Madiu     | Auto<br>Truck       | vo. 2.0    | 00       |             |          |         |
| Observer Height (Above Pad):     | 5.0 feet        |            | wealur    |                     | (S. 2.2    | .97      | Grada Adi   | ustmont  | 0.0     |
| Pad Elevation:                   | 0.0 feet        |            | Heav      | у тиск              | S. 8.0     | 06       | Graue Auj   | usimeni. | 0.0     |
| Road Elevation:                  | 0.0 feet        |            | Lane Eq   | uivalen             | t Distanc  | e (in i  | feet)       |          |         |
| Road Grade:                      | 0.0%            |            |           | Auto                | os: 117.8  | 881      |             |          |         |
| Left View:                       | -90.0 degrees   |            | Mediur    | n Truck             | s: 117.8   | 806      |             |          |         |
| Right View:                      | 90.0 degrees    |            | Heav      | y Truck             | ks: 117.8  | 814      |             |          |         |
| EHWA Noise Medel Coloulations    |                 |            |           |                     |            |          |             |          |         |
| VehicleType REMEL                | Traffic Flow    | Distanco   | Einito    | Pood                | Erosp      |          | Barriar Att | an Bor   | m Atton |
| Autos: 64.30                     | 2 70            | -5.6       | 0         | -1 20               | 110311     | 1.05     |             |          |         |
| Medium Trucks: 75.75             | -14 54          | -5.6       | .9<br>:0  | -1.20               |            | .1 15    | 0.0         |          | 0.000   |
| Heavy Trucks: 81.57              | -18.49          | -5.6       | 9<br>10   | -1.20               |            | .1 40    | 0.0         |          | 0.000   |
|                                  | -10.43          | -0.0       | 9         | -1.20               |            | 1.40     | 0.0         | .00      | 0.000   |
| Unmitigated Noise Levels (withou | ut Topo and bar | rier atter | nuation)  |                     | • • • •    |          |             |          |         |
| VehicleType Leq Peak Hour        | Leq Day         | Leq E      | vening    | Leq                 | Night      |          | Ldn         | CI       | VEL     |
| Autos: 60.1                      | 58.2            | 2          | 56.4      |                     | 50.4       |          | 59.0        | )        | 59.6    |
| Medium Trucks: 54.3              | 52.8            | 3          | 46.5      |                     | 44.9       |          | 53.4        | -        | 53.6    |
| Heavy Trucks: 56.2               | 54.8            | 3          | 45.7      |                     | 47.0       |          | 55.3        | 8        | 55.5    |
| Vehicle Noise: 62.3              | 60.6            | 6          | 57.2      |                     | 52.8       |          | 61.3        | 3        | 61.8    |
| Centerline Distance to Noise Con | tour (in feet)  |            |           |                     |            |          |             |          |         |
|                                  |                 | 70         | dBA       | 65                  | dBA        | 6        | 60 dBA      | 55       | dBA     |
|                                  | Ldn             | : 3        | 32        | (                   | 68         |          | 147         | 3        | 17      |
|                                  | CNEL            | .: З       | 34        | -                   | 73         |          | 157         | 3        | 38      |

Scenario: Existing Without Project Road Name: Jefferson Wy. Road Segment: w/o Lincoln Bl.

#### Project Name: Thatcher Job Number: 12185

| Road Segme        | ni. W/O LINCOIN B | 1.             |             |          |                  |           |            |              |           |         |
|-------------------|-------------------|----------------|-------------|----------|------------------|-----------|------------|--------------|-----------|---------|
| SITE              | SPECIFIC INP      | UT DATA        |             |          | Ν                | OISE N    | IODE       | L INPUT      | S         |         |
| Highway Data      |                   |                | ,           | Site Con | ditions          | (Hard =   | 10, Sc     | oft = 15)    |           |         |
| Average Daily     | Traffic (Adt): 2  | ,000 vehicles  |             |          |                  | /         | Autos:     | 15           |           |         |
| Peak Hour         | Percentage:       | 10%            |             | Me       | dium Tru         | ıcks (2 A | xles):     | 15           |           |         |
| Peak F            | lour Volume:      | 200 vehicles   |             | He       | avy Truc         | :ks (3+ A | xles):     | 15           |           |         |
| Ve                | hicle Speed:      | 25 mph         |             | Vehicle  | Mix              |           |            |              |           |         |
| Near/Far La       | ne Distance:      | 12 feet        |             | Veh      | icleType         |           | Day        | Evening      | Night     | Daily   |
| Site Data         |                   |                |             |          | A                | lutos:    | 77.5%      | 12.9%        | 9.6%      | 97.42%  |
| Ba                | rrier Height:     | 0.0 feet       |             | M        | edium Tr         | ucks:     | 84.8%      | 4.9%         | 10.3%     | 1.84%   |
| Barrier Type (0-W | /all, 1-Berm):    | 0.0            |             | I        | Heavy Tr         | ucks:     | 86.5%      | 2.7%         | 10.8%     | 0.74%   |
| Centerline Di     | st. to Barrier:   | 60.0 feet      |             | Noise So | ource El         | evation   | s (in fe   | eet)         |           |         |
| Centerline Dist.  | to Observer:      | 70.0 feet      |             |          | Autos            | s: 0.0    | 000        |              |           |         |
| Barrier Distance  | to Observer:      | 10.0 feet      |             | Mediu    | m Trucks         | s: 2.2    | 297        |              |           |         |
| Observer Height   | (Above Pad):      | 5.0 feet       |             | Heav     | y Trucks         | s: 8.0    | 006        | Grade Adj    | iustment. | : 0.0   |
|                   | ad Elevation:     | 0.0 feet       | _           | l ana Ea | uivoloné         | Distant   | o (in )    | faat)        |           |         |
| Ro                | ad Elevation:     | 0.0 feet       |             | Lane Eq  | uivaient         | Distant   |            | ieet)        |           |         |
|                   | Road Grade:       | 0.0%           |             |          | Autos<br>Tarrela | 5. 69.9   | 921<br>705 |              |           |         |
|                   | Left View:        | -90.0 degrees  |             | Mealu    |                  | 5: 69.1   | (95        |              |           |         |
|                   | Right View:       | 90.0 degrees   |             | Heav     | y Trucks         | 5. 69.8   | 307        |              |           |         |
| FHWA Noise Mod    | el Calculations   |                |             |          |                  |           |            |              |           |         |
| VehicleType       | REMEL 7           | raffic Flow    | Distance    | Finite   | Road             | Fresn     | el         | Barrier Atte | en Ber    | m Atten |
| Autos:            | 58.73             | -6.39          | -2.2        | 9        | -1.20            |           | -0.98      | 0.0          | 000       | 0.000   |
| Medium Trucks:    | 70.80             | -23.63         | -2.2        | 8        | -1.20            |           | -1.15      | 0.0          | 000       | 0.000   |
| Heavy Trucks:     | 77.97             | -27.58         | -2.2        | 8        | -1.20            |           | -1.61      | 0.0          | 000       | 0.000   |
| Unmitigated Nois  | e Levels (withou  | ıt Topo and ba | rrier atten | uation)  |                  |           |            |              |           |         |
| VehicleType       | Leq Peak Hour     | Leq Day        | Leq E       | vening   | Leq              | Night     |            | Ldn          | Cl        | NEL     |
| Autos:            | 48.9              | 47             | .0          | 45.2     |                  | 39.1      |            | 47.8         | 3         | 48.4    |
| Medium Trucks:    | 43.7              | 42             | .2          | 35.8     |                  | 34.3      |            | 42.7         | ,         | 43.0    |
| Heavy Trucks:     | 46.9              | 45             | .5          | 36.5     |                  | 37.7      |            | 46.1         |           | 46.2    |
| Vehicle Noise:    | 51.7              | 50             | .1          | 46.2     |                  | 42.2      |            | 50.8         | 3         | 51.1    |
| Centerline Distan | ce to Noise Con   | tour (in feet) |             |          |                  |           |            |              |           |         |
|                   |                   |                | 70 (        | dBA      | 65 0             | dBA       | 6          | 60 dBA       | 55        | dBA     |
|                   |                   | Ld             | n: 4        | 1        | 8                | 3         |            | 17           | 3         | 36      |
|                   |                   | CNE            | L: 4        | 1        | 8                | 3         |            | 18           | 3         | 39      |

Scenario: Existing Without Project Road Name: Maxella Av. Road Segment: e/o Lincoln Bl.

| SITE SPECIFIC                  | INPUT DATA      |             |             | NOIS                |            |              | 5        |         |
|--------------------------------|-----------------|-------------|-------------|---------------------|------------|--------------|----------|---------|
| Highway Data                   |                 |             | Site Con    | ditions (Hard       | l = 10, So | oft = 15)    |          |         |
| Average Daily Traffic (Adt):   | 11,200 vehicle  | s           |             |                     | Autos:     | 15           |          |         |
| Peak Hour Percentage:          | 10%             |             | Me          | dium Trucks (       | 2 Axles):  | 15           |          |         |
| Peak Hour Volume:              | 1,120 vehicle   | es          | He          | avy Trucks (3       | + Axles):  | 15           |          |         |
| Vehicle Speed:                 | 40 mph          |             | Vehicle I   | Mix                 |            |              |          |         |
| Near/Far Lane Distance:        | 40 feet         |             | Vehi        | icleType            | Day        | Evening      | Night    | Daily   |
| Site Data                      |                 |             |             | Autos:              | 77.5%      | 12.9%        | 9.6%     | 97.42%  |
| Barrier Height:                | 0.0 feet        |             | Me          | edium Trucks:       | 84.8%      | 4.9%         | 10.3%    | 1.84%   |
| Barrier Type (0-Wall, 1-Berm): | 0.0             |             | ŀ           | leavy Trucks:       | 86.5%      | 2.7%         | 10.8%    | 0.74%   |
| Centerline Dist. to Barrier:   | 100.0 feet      |             | Noise Sc    | ource Elevatio      | ons (in f  | eet)         |          |         |
| Centerline Dist. to Observer:  | 110.0 feet      |             |             | Autos:              | 0.000      | ,            |          |         |
| Barrier Distance to Observer:  | 10.0 feet       |             | Mediur      | n Trucks:           | 2.297      |              |          |         |
| Observer Height (Above Pad):   | 5.0 feet        |             | Heav        | v Trucks:           | 8.006      | Grade Adj    | ustment: | 0.0     |
| Pad Elevation:                 | 0.0 feet        |             |             | ,                   |            |              |          |         |
| Road Elevation:                | 0.0 feet        |             | Lane Eq     | uivalent Dista      | ance (in   | feet)        |          |         |
| Road Grade:                    | 0.0%            |             |             | Autos: 10           | 8.282      |              |          |         |
| Left View:                     | -90.0 degre     | es          | Mediur      | <i>m Trucks:</i> 10 | 8.200      |              |          |         |
| Right View:                    | 90.0 degre      | es          | Heav        | y Trucks: 10        | 8.208      |              |          |         |
| FHWA Noise Model Calculation   | ons             |             |             |                     |            |              |          |         |
| VehicleType REMEL              | Traffic Flow    | Distan      | ce Finite   | Road Fre            | esnel      | Barrier Atte | en Beri  | n Atten |
| Autos: 66.5                    | 1 -0.95         |             | -5.14       | -1.20               | -1.04      | 0.0          | 00       | 0.000   |
| Medium Trucks: 77.7            | 2 -18.19        |             | -5.13       | -1.20               | -1.15      | 0.0          | 00       | 0.000   |
| Heavy Trucks: 82.9             | 9 -22.14        |             | -5.13       | -1.20               | -1.43      | 0.0          | 00       | 0.000   |
| Unmitigated Noise Levels (with | thout Topo and  | l barrier a | ttenuation) |                     |            |              |          |         |
| VehicleType Leq Peak H         | our Leq Da      | y Le        | eq Evening  | Leq Night           |            | Ldn          | CN       | JEL     |
| Autos:                         | 59.2            | 57.3        | 55.6        | 4                   | 9.5        | 58.1         |          | 58.7    |
| Medium Trucks:                 | 53.2            | 51.7        | 45.3        | 4                   | 3.8        | 52.2         |          | 52.5    |
| Heavy Trucks:                  | 54.5            | 53.1        | 44.1        | 4                   | 5.3        | 53.7         |          | 53.8    |
| Vehicle Noise:                 | 61.2            | 59.5        | 56.2        | 5                   | 1.7        | 60.2         |          | 60.7    |
| Centerline Distance to Noise   | Contour (in fee | t)          |             |                     |            |              |          |         |
|                                |                 |             | 70 dBA      | 65 dBA              | e          | 60 dBA       | 55       | dBA     |
|                                |                 | Ldn:        | 24          | 53                  |            | 114          | 24       | 45      |
|                                | C               | NEL:        | 26          | 56                  |            | 122          | 20       | 62      |

Scenario: Existing Without Project Road Name: Marina Expy. Road Segment: e/o Lincoln Bl.

| Road Seyme        |                   | <b>р</b> .         |              |           |                                         |          |             |              |           |         |
|-------------------|-------------------|--------------------|--------------|-----------|-----------------------------------------|----------|-------------|--------------|-----------|---------|
| SITE              | SPECIFIC INF      | PUT DATA           |              |           | N                                       | DISE N   | IODE        | L INPUT      | S         |         |
| Highway Data      |                   |                    | S            | Site Con  | ditions (                               | Hard =   | 10, Sc      | oft = 15)    |           |         |
| Average Daily     | Traffic (Adt): 22 | 2,300 vehicles     |              |           |                                         | A        | Autos:      | 15           |           |         |
| Peak Hour         | Percentage:       | 10%                |              | Mee       | dium Tru                                | cks (2 A | xles):      | 15           |           |         |
| Peak F            | lour Volume: 2    | 2,230 vehicles     |              | Hea       | avy Trucl                               | ks (3+ A | xles):      | 15           |           |         |
| Ve                | hicle Speed:      | 40 mph             | V            | /ehicle I | Nix                                     |          |             |              |           |         |
| Near/Far La       | ne Distance:      | 80 feet            |              | Vehi      | cleType                                 |          | Day         | Evening      | Night     | Daily   |
| Site Data         |                   |                    |              |           | A                                       | utos:    | 77.5%       | 12.9%        | 9.6%      | 97.42%  |
| Ba                | rrier Height:     | 0.0 feet           |              | Me        | edium Tru                               | ucks: 8  | 84.8%       | 4.9%         | 10.3%     | 1.84%   |
| Barrier Type (0-W | /all, 1-Berm):    | 0.0                |              | H         | leavy Tru                               | ucks:    | 86.5%       | 2.7%         | 10.8%     | 0.74%   |
| Centerline Di     | st. to Barrier:   | 104.0 feet         | ٨            | loise So  | urce Ele                                | vations  | : (in fe    | et)          |           |         |
| Centerline Dist.  | to Observer:      | 114.0 feet         |              |           |                                         | · 0.0    | 00          | ,            |           |         |
| Barrier Distance  | to Observer:      | 10.0 feet          |              | Mediur    | n Trucks                                | · 2.2    | 97          |              |           |         |
| Observer Height   | (Above Pad):      | 5.0 feet           |              | Heav      | v Trucks                                | · 80     | 06          | Grade Adi    | iustment. | : 0.0   |
| P                 | ad Elevation:     | 0.0 feet           |              | neur      | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | . 0.0    |             |              |           |         |
| Ro                | ad Elevation:     | 0.0 feet           | L            | ane Equ   | uivalent                                | Distanc  | e (in i     | feet)        |           |         |
|                   | Road Grade:       | 0.0%               |              |           | Autos.                                  | : 106.8  | 369         |              |           |         |
|                   | Left View:        | -90.0 degrees      |              | Mediur    | n Trucks.                               | : 106.7  | 786         |              |           |         |
|                   | Right View:       | 90.0 degrees       |              | Heav      | y Trucks.                               | : 106.7  | <b>'</b> 94 |              |           |         |
| FHWA Noise Mod    | el Calculations   |                    |              |           |                                         |          |             |              |           |         |
| VehicleType       | REMEL             | Traffic Flow       | Distance     | Finite    | Road                                    | Fresn    | el          | Barrier Atte | en Ber    | m Atten |
| Autos:            | 66.51             | 2.04               | -5.05        |           | -1.20                                   |          | -1.05       | 0.0          | 000       | 0.000   |
| Medium Trucks:    | 77.72             | -15.19             | -5.05        |           | -1.20                                   |          | -1.15       | 0.0          | 000       | 0.000   |
| Heavy Trucks:     | 82.99             | -19.15             | -5.05        |           | -1.20                                   |          | -1.42       | 0.0          | 000       | 0.000   |
| Unmitigated Nois  | e Levels (witho   | ut Topo and ba     | rrier attenu | uation)   |                                         |          |             |              |           |         |
| VehicleType       | Leq Peak Hour     | Leq Day            | Leq Ev       | ening     | Leq N                                   | light    |             | Ldn          | Cl        | NEL     |
| Autos:            | 62.3              | B 60.              | 4            | 58.6      |                                         | 52.6     |             | 61.2         | 2         | 61.8    |
| Medium Trucks:    | 56.3              | <b>3</b> 54.       | 8            | 48.4      |                                         | 46.9     |             | 55.3         | 3         | 55.6    |
| Heavy Trucks:     | 57.6              | 5 56. <sup>°</sup> | 2            | 47.1      |                                         | 48.4     |             | 56.7         | 7         | 56.9    |
| Vehicle Noise:    | 64.3              | 62.                | 6            | 59.3      |                                         | 54.8     |             | 63.3         | 3         | 63.7    |
| Centerline Distan | ce to Noise Cor   | ntour (in feet)    |              |           |                                         |          |             |              |           |         |
|                   |                   |                    | 70 d         | BA        | 65 d                                    | BA       | 6           | 60 dBA       | 55        | dBA     |
|                   |                   | Ldr                | n: 41        |           | 88                                      | 3        |             | 189          | 4         | .07     |
|                   |                   | CNEL               | <u>L:</u> 44 | ŀ         | 94                                      | 1        |             | 202          | 4         | 36      |

Scenario: Existing With Project Road Name: Lincoln Bl. Road Segment: n/o W. Washington Bl.

| SITE SPECIFIC IN               | NPUT DATA        |            |                | NOISE      | MODE     |             | S         |         |
|--------------------------------|------------------|------------|----------------|------------|----------|-------------|-----------|---------|
| Highway Data                   |                  |            | Site Condition | ns (Hard : | = 10, So | oft = 15)   |           |         |
| Average Daily Traffic (Adt):   | 31,800 vehicles  |            |                |            | Autos:   | 15          |           |         |
| Peak Hour Percentage:          | 10%              |            | Medium         | Trucks (2  | Axles):  | 15          |           |         |
| Peak Hour Volume:              | 3,180 vehicles   |            | Heavy T        | rucks (3+  | Axles):  | 15          |           |         |
| Vehicle Speed:                 | 40 mph           |            | Vehicle Mix    |            |          |             |           |         |
| Near/Far Lane Distance:        | 82 feet          | _          | VehicleTy      | pe         | Day      | Evening     | Night     | Daily   |
| Site Data                      |                  |            |                | Autos:     | 77.5%    | 12.9%       | 9.6%      | 97.42%  |
| Barrier Height:                | 0.0 feet         |            | Medium         | Trucks:    | 84.8%    | 4.9%        | 10.3%     | 1.84%   |
| Barrier Type (0-Wall, 1-Berm): | 0.0              |            | Heavy          | Trucks:    | 86.5%    | 2.7%        | 10.8%     | 0.74%   |
| Centerline Dist. to Barrier:   | 136.0 feet       | _          | Noise Source   | Elevatio   | ns (in f | eet)        |           |         |
| Centerline Dist. to Observer:  | 146.0 feet       |            | Au             | tos: 0     | .000     | ,           |           |         |
| Barrier Distance to Observer:  | 10.0 feet        |            | Medium Tru     | cks: 2     | .297     |             |           |         |
| Observer Height (Above Pad):   | 5.0 feet         |            | Heavy Tru      | cks: 8     | .006     | Grade Ad    | justment. | 0.0     |
| Pad Elevation:                 | 0.0 feet         | _          | · - · ·        |            |          |             |           |         |
| Road Elevation:                | 0.0 feet         |            | Lane Equivale  | ent Distai | nce (în  | feet)       |           |         |
| Road Grade:                    | 0.0%             |            | Au             | tos: 140   | .214     |             |           |         |
| Left View:                     | -90.0 degrees    |            | Medium Tru     | cks: 140   | .151     |             |           |         |
| Right View:                    | 90.0 degrees     |            | Heavy Tru      | cks: 140   | .157     |             |           |         |
| FHWA Noise Model Calculation   | IS               |            |                |            |          |             |           |         |
| VehicleType REMEL              | Traffic Flow D   | listance   | Finite Road    | Fres       | nel      | Barrier Att | en Ber    | m Atten |
| Autos: 66.51                   | 3.58             | -6.8       | 2 -1.2         | 0          | -1.07    | 0.0         | 000       | 0.000   |
| Medium Trucks: 77.72           | -13.65           | -6.8       | 2 -1.2         | 0          | -1.15    | 0.0         | 000       | 0.000   |
| Heavy Trucks: 82.99            | -17.61           | -6.8       | 2 -1.2         | 0          | -1.35    | 0.0         | 000       | 0.000   |
| Unmitigated Noise Levels (with | out Topo and bar | rier atter | nuation)       |            |          |             |           |         |
| VehicleType Leq Peak Ho        | ur Leq Day       | Leq E      | vening Le      | eq Night   |          | Ldn         | Cl        | VEL     |
| Autos: 62                      | 2.1 60.2         | 2          | 58.4           | 52         | .4       | 61.0        | )         | 61.6    |
| Medium Trucks: 56              | S.O 54.5         | 5          | 48.2           | 46         | .6       | 55.1        | l         | 55.3    |
| Heavy Trucks: 57               | 7.4 55.9         |            | 46.9           | 48         | .2       | 56.5        | 5         | 56.6    |
| Vehicle Noise: 64              | 4.1 62.4         | ļ          | 59.1           | 54         | .5       | 63.1        | 1         | 63.5    |
| Centerline Distance to Noise C | ontour (in feet) |            |                |            |          |             |           |         |
|                                |                  | 70         | dBA 6          | 5 dBA      | 6        | 60 dBA      | 55        | dBA     |
|                                | Ldn:             | : 5        | 50             | 108        |          | 234         | 5         | 03      |
|                                | CNEL             | : 5        | 54             | 116        |          | 250         | 5         | 39      |

Scenario: Existing With Project Road Name: Lincoln Bl. Road Segment: s/o W. Washington Bl. Project Name: Thatcher Job Number: 12185

| Noau Seyme        | ni. 5/0 W. Wasi  |                 |             |           |           |            |         |             |          |          |
|-------------------|------------------|-----------------|-------------|-----------|-----------|------------|---------|-------------|----------|----------|
| SITE              | SPECIFIC IN      | PUT DATA        |             |           | N         | OISE M     | IODE    |             | S        |          |
| Highway Data      |                  |                 |             | Site Con  | ditions ( | (Hard =    | 10, Sc  | oft = 15)   |          |          |
| Average Daily     | Traffic (Adt): 4 | 0,900 vehicles  |             |           |           | A          | lutos:  | 15          |          |          |
| Peak Hour         | Percentage:      | 10%             |             | Me        | dium Tru  | cks (2 A   | xles):  | 15          |          |          |
| Peak F            | lour Volume:     | 4,090 vehicles  |             | He        | avy Truc  | ks (3+ A   | xles):  | 15          |          |          |
| Ve                | hicle Speed:     | 40 mph          |             | Vehicle   | Mix       |            |         |             |          |          |
| Near/Far La       | ne Distance:     | 82 feet         |             | Veh       | icleType  |            | Day     | Evening     | Night    | Daily    |
| Site Data         |                  |                 |             |           | A         | utos: 7    | 77.5%   | 12.9%       | 9.6%     | 97.42%   |
| Ba                | rrier Height:    | 0.0 feet        |             | M         | edium Tri | ucks: 8    | 34.8%   | 4.9%        | 10.3%    | 1.84%    |
| Barrier Type (0-W | /all, 1-Berm):   | 0.0             |             | I         | Heavy Tri | ucks: 8    | 36.5%   | 2.7%        | 10.8%    | 0.74%    |
| Centerline Di     | st. to Barrier:  | 136.0 feet      |             | Noise Su  | ource Ele | evations   | in fe   | et)         |          |          |
| Centerline Dist.  | to Observer:     | 146.0 feet      |             | 110/00 01 |           | . 0.0      | 00      | ,01)        |          |          |
| Barrier Distance  | to Observer:     | 10.0 feet       |             | Mediu     | m Trucks  | · 0.0      | 97      |             |          |          |
| Observer Height   | (Above Pad):     | 5.0 feet        |             | Heav      | v Trucks  | 80         | 06      | Grade Ad    | iustment | : 0.0    |
| P                 | ad Elevation:    | 0.0 feet        |             | , iou.    | y maone   | . 0.0      |         | ,           |          |          |
| Ro                | ad Elevation:    | 0.0 feet        |             | Lane Eq   | uivalent  | Distanc    | e (in i | feet)       |          |          |
|                   | Road Grade:      | 0.0%            |             |           | Autos     | : 140.2    | 214     |             |          |          |
|                   | Left View:       | -90.0 degrees   |             | Mediu     | m Trucks  | : 140.1    | 51      |             |          |          |
|                   | Right View:      | 90.0 degrees    |             | Heav      | vy Trucks | : 140.1    | 57      |             |          |          |
| FHWA Noise Mod    | el Calculations  | 1               |             |           |           |            |         |             |          |          |
| VehicleType       | REMEL            | Traffic Flow    | Distance    | Finite    | Road      | Fresne     | əl      | Barrier Att | en Ber   | rm Atten |
| Autos:            | 66.51            | 4.68            | -6.         | 82        | -1.20     | -          | 1.07    | 0.0         | 000      | 0.000    |
| Medium Trucks:    | 77.72            | -12.56          | -6.         | 82        | -1.20     | -          | 1.15    | 0.0         | 000      | 0.000    |
| Heavy Trucks:     | 82.99            | -16.52          | -6.         | 82        | -1.20     | -          | 1.35    | 0.0         | 000      | 0.000    |
| Unmitigated Nois  | e Levels (witho  | out Topo and ba | arrier atte | nuation)  |           |            |         |             |          |          |
| VehicleType       | Leq Peak Hour    | · Leq Day       | Leq I       | Evening   | Leq I     | Vight      |         | Ldn         | C        | NEL      |
| Autos:            | 63.2             | 2 61            | .3          | 59.5      |           | 53.4       |         | 62.1        |          | 62.7     |
| Medium Trucks:    | 57.1             | 1 55            | .6          | 49.3      |           | 47.7       |         | 56.2        | 2        | 56.4     |
| Heavy Trucks:     | 58.5             | 5 57            | .0          | 48.0      |           | 49.3       |         | 57.6        | 5        | 57.7     |
| Vehicle Noise:    | 65.2             | 2 63            | .4          | 60.2      |           | 55.6       |         | 64.2        | 2        | 64.6     |
| Centerline Distan | ce to Noise Col  | ntour (in feet) |             |           |           |            |         |             |          |          |
|                   |                  |                 | 70          | dBA       | 65 c      | <i>IBA</i> | e       | 0 dBA       | 55       | dBA      |
|                   |                  | La              | ln:         | 60        | 12        | 28         |         | 276         | 5        | 595      |
|                   |                  | CNE             | EL:         | 64        | 13        | 57         |         | 296         | 6        | 37       |

Scenario: Existing With Project Road Name: Lincoln Bl. Road Segment: n/o Jefferson Wy.

| Road Gegine       |                   | vvy.           |           |             |          |           |           |              |          |         |
|-------------------|-------------------|----------------|-----------|-------------|----------|-----------|-----------|--------------|----------|---------|
| SITE              | SPECIFIC INP      | UT DATA        |           |             |          | NOISE     | MODE      |              | S        |         |
| Highway Data      |                   |                |           | Site Co     | nditions | s (Hard = | = 10, So  | oft = 15)    |          |         |
| Average Daily     | Traffic (Adt): 41 | ,700 vehicles  |           |             |          |           | Autos:    | 15           |          |         |
| Peak Hour         | Percentage:       | 10%            |           | M           | edium T  | rucks (2  | Axles):   | 15           |          |         |
| Peak H            | lour Volume: 4    | ,170 vehicles  |           | H           | eavy Tru | ıcks (3+  | Axles):   | 15           |          |         |
| Ve                | hicle Speed:      | 40 mph         |           | Vehicle     | Mix      |           |           |              |          |         |
| Near/Far La       | ne Distance:      | 82 feet        |           | Ve          | hicleTyp | е         | Day       | Evening      | Night    | Daily   |
| Site Data         |                   |                |           |             |          | Autos:    | 77.5%     | 12.9%        | 9.6%     | 97.42%  |
| Ba                | rrier Height:     | 0.0 feet       |           | ٨           | ledium T | Trucks:   | 84.8%     | 4.9%         | 10.3%    | 1.84%   |
| Barrier Type (0-W | /all, 1-Berm):    | 0.0            |           |             | Heavy T  | Trucks:   | 86.5%     | 2.7%         | 10.8%    | 0.74%   |
| Centerline Di     | st. to Barrier:   | 136.0 feet     |           | Noise S     | ource E  | Elevatior | ns (in fe | eet)         |          |         |
| Centerline Dist.  | to Observer:      | 146.0 feet     |           |             | Auto     | res = 0   | 000       |              |          |         |
| Barrier Distance  | to Observer:      | 10.0 feet      |           | Medii       | im Truci | ks: 2     | 297       |              |          |         |
| Observer Height   | (Above Pad):      | 5.0 feet       |           | Hea         | vv Truci | ks: 8     | 006       | Grade Ad     | iustment | : 0.0   |
| Pa                | ad Elevation:     | 0.0 feet       |           |             | vy maon  |           | .000      | ,            |          |         |
| Roa               | ad Elevation:     | 0.0 feet       |           | Lane E      | quivaler | nt Distan | ice (in   | feet)        |          |         |
|                   | Road Grade:       | 0.0%           |           |             | Auto     | os: 140   | .214      |              |          |         |
|                   | Left View:        | -90.0 degree   | s         | Mediu       | ım Trucl | ks: 140   | .151      |              |          |         |
|                   | Right View:       | 90.0 degree    | S         | Hea         | vy Truci | ks: 140   | .157      |              |          |         |
| FHWA Noise Mod    | el Calculations   |                |           |             |          |           |           |              |          |         |
| VehicleType       | REMEL 7           | raffic Flow    | Distan    | ce Finite   | e Road   | Fres      | nel       | Barrier Atte | en Ber   | m Atten |
| Autos:            | 66.51             | 4.76           |           | -6.82       | -1.20    | 1         | -1.07     | 0.0          | 000      | 0.000   |
| Medium Trucks:    | 77.72             | -12.48         |           | -6.82       | -1.20    |           | -1.15     | 0.0          | 000      | 0.000   |
| Heavy Trucks:     | 82.99             | -16.43         |           | -6.82       | -1.20    |           | -1.35     | 0.0          | 000      | 0.000   |
| Unmitigated Nois  | e Levels (withou  | It Topo and I  | barrier a | ttenuation) |          |           |           |              |          |         |
| VehicleType       | Leq Peak Hour     | Leq Day        | Le        | q Evening   | Leq      | n Night   |           | Ldn          | Cl       | NEL     |
| Autos:            | 63.3              | 6              | 51.4      | 59.6        | 6        | 53.       | 5         | 62.2         | 2        | 62.8    |
| Medium Trucks:    | 57.2              | 5              | 5.7       | 49.4        | ļ        | 47.       | 8         | 56.3         | 3        | 56.5    |
| Heavy Trucks:     | 58.5              | 5              | 57.1      | 48.1        | l        | 49.       | 3         | 57.7         | 7        | 57.8    |
| Vehicle Noise:    | 65.3              | 6              | 63.5      | 60.3        | 3        | 55.       | 7         | 64.2         | 2        | 64.7    |
| Centerline Distan | ce to Noise Con   | tour (in feet) |           |             |          |           |           |              |          |         |
|                   |                   |                |           | 70 dBA      | 65       | 5 dBA     | e         | 60 dBA       | 55       | dBA     |
|                   |                   | L              | dn:       | 60          |          | 130       |           | 280          | 6        | 03      |
|                   |                   | CN             | IEL:      | 65          |          | 139       |           | 300          | 6        | 46      |
|                   |                   |                |           |             |          |           |           |              |          |         |

Scenario: Existing With Project Road Name: Lincoln Bl. Road Segment: s/o Jefferson Wy.

#### Project Name: Thatcher Job Number: 12185

| Road Segment: s/o Jeffers      | son vvy.         |           |             |            |                     |               |             |
|--------------------------------|------------------|-----------|-------------|------------|---------------------|---------------|-------------|
| SITE SPECIFIC I                | NPUT DATA        |           |             | NO         | ISE MODE            | EL INPUTS     |             |
| Highway Data                   |                  |           | Site Con    | ditions (H | <i>lard = 10,</i> S | oft = 15)     |             |
| Average Daily Traffic (Adt):   | 41,700 vehicle   | S         |             |            | Autos               | : 15          |             |
| Peak Hour Percentage:          | 10%              |           | Me          | dium Truc  | ks (2 Axles)        | : 15          |             |
| Peak Hour Volume:              | 4,170 vehicle    | S         | He          | avy Truck  | s (3+ Axles)        | : 15          |             |
| Vehicle Speed:                 | 40 mph           |           | Vehicle     | Mix        |                     |               |             |
| Near/Far Lane Distance:        | 82 feet          |           | Veh         | icleType   | Day                 | Evening I     | Night Daily |
| Site Data                      |                  |           |             | Au         | tos: 77.5%          | 6 12.9%       | 9.6% 97.42% |
| Barrier Height:                | 0.0 feet         |           | M           | edium Truc | cks: 84.8%          | 6 4.9%        | 10.3% 1.84% |
| Barrier Type (0-Wall, 1-Berm): | 0.0              |           | ŀ           | leavy Truc | cks: 86.5%          | 6 2.7%        | 10.8% 0.74% |
| Centerline Dist. to Barrier:   | 136.0 feet       |           | Noise So    | ource Elev | vations (in f       | feet)         |             |
| Centerline Dist. to Observer:  | 146.0 feet       |           |             |            | 0.000               | ,             |             |
| Barrier Distance to Observer:  | 10.0 feet        |           | Mediu       | m Trucks   | 2 297               |               |             |
| Observer Height (Above Pad):   | 5.0 feet         |           | Hoa         | n Trucks:  | 8.006               | Grade Adiu    | stment: 0.0 |
| Pad Elevation:                 | 0.0 feet         |           | Tieav       | y mucho.   | 0.000               | Crado raja    |             |
| Road Elevation:                | 0.0 feet         |           | Lane Eq     | uivalent D | Distance (in        | feet)         |             |
| Road Grade:                    | 0.0%             |           |             | Autos:     | 140.214             |               |             |
| Left View:                     | -90.0 degre      | es        | Mediu       | m Trucks:  | 140.151             |               |             |
| Right View:                    | 90.0 degre       | es        | Heav        | y Trucks:  | 140.157             |               |             |
| EHWA Noise Model Calculation   | ne               |           |             |            |                     |               |             |
| VehicleType REMEL              | Traffic Flow     | Distand   | ce Finite   | Road       | Fresnel             | Barrier Atter | Berm Atten  |
| Autos: 66.51                   | 4.76             | -         | 6.82        | -1.20      | -1.07               | 0.00          | 0 0.000     |
| Medium Trucks: 77.72           | -12.48           | -         | 6.82        | -1.20      | -1.15               | 0.00          | 0 0.000     |
| Heavy Trucks: 82.99            | 9 -16.43         | -         | 6.82        | -1.20      | -1.35               | 0.00          | 0 0.000     |
| Unmitigated Noise Levels (with | hout Topo and    | barrier a | ttenuation) |            |                     |               |             |
| VehicleType Leq Peak Ho        | our Leq Day      | / Le      | q Evening   | Leq Ni     | ight                | Ldn           | CNEL        |
| Autos: 6                       | 3.3              | 61.4      | 59.6        |            | 53.5                | 62.2          | 62.8        |
| Medium Trucks: 5               | 7.2              | 55.7      | 49.4        |            | 47.8                | 56.3          | 56.5        |
| Heavy Trucks: 5                | 8.5              | 57.1      | 48.1        |            | 49.3                | 57.7          | 57.8        |
| Vehicle Noise: 6               | 5.3              | 63.5      | 60.3        |            | 55.7                | 64.2          | 64.7        |
| Centerline Distance to Noise C | Contour (in feet | t)        |             |            |                     |               |             |
|                                |                  |           | 70 dBA      | 65 dE      | BA                  | 60 dBA        | 55 dBA      |
|                                |                  | Ldn:      | 60          | 130        |                     | 280           | 603         |
|                                | C                | NEL:      | 65          | 139        | )                   | 300           | 646         |

Scenario: Existing With Project Road Name: Lincoln Bl. Road Segment: n/o Maxella Av.

| Road Gegine       |                   | ····            |         |         |          |            |           |          |             |          |         |
|-------------------|-------------------|-----------------|---------|---------|----------|------------|-----------|----------|-------------|----------|---------|
| SITE              | SPECIFIC INF      | PUT DATA        |         |         |          | ſ          | NOISE     | MODE     |             | S        |         |
| Highway Data      |                   |                 | -       | S       | ite Con  | ditions    | (Hard :   | = 10, S  | oft = 15)   |          |         |
| Average Daily     | Traffic (Adt): 38 | 3,600 vehicles  |         |         |          |            |           | Autos:   | 15          |          |         |
| Peak Hour         | Percentage:       | 10%             |         |         | Med      | dium Ti    | rucks (2  | Axles):  | 15          |          |         |
| Peak F            | lour Volume: 🗧    | 3,860 vehicles  |         |         | Hea      | avy Tru    | ıcks (3+  | Axles):  | 15          |          |         |
| Ve                | hicle Speed:      | 40 mph          |         | V       | ehicle N | <i>lix</i> |           |          |             |          |         |
| Near/Far La       | ne Distance:      | 82 feet         |         |         | Vehi     | cleTyp     | е         | Day      | Evening     | Night    | Daily   |
| Site Data         |                   |                 |         |         |          |            | Autos:    | 77.5%    | 12.9%       | 9.6%     | 97.42%  |
| Ba                | rrier Height:     | 0.0 feet        |         |         | Me       | dium T     | Frucks:   | 84.8%    | 4.9%        | 10.3%    | 1.84%   |
| Barrier Type (0-W | /all, 1-Berm):    | 0.0             |         |         | H        | leavy T    | rucks:    | 86.5%    | 2.7%        | 10.8%    | 0.74%   |
| Centerline Di     | st. to Barrier:   | 136.0 feet      |         | N       | oise So  | urce E     | levatio   | ns (in f | eet)        |          |         |
| Centerline Dist.  | to Observer:      | 146.0 feet      |         |         |          | Auto       | os: 0     | .000     | ,           |          |         |
| Barrier Distance  | to Observer:      | 10.0 feet       |         |         | Mediun   | n Truck    | ks: 2     | .297     |             |          |         |
| Observer Height   | (Above Pad):      | 5.0 feet        |         |         | Heav     | v Truck    | ks: 8     | .006     | Grade Ad    | iustment | : 0.0   |
| P                 | ad Elevation:     | 0.0 feet        |         | _       |          |            |           |          |             |          |         |
| Ro                | ad Elevation:     | 0.0 feet        |         | Li      | ane Equ  | livalen    | nt Distar | nce (in  | feet)       |          |         |
|                   | Road Grade:       | 0.0%            |         |         |          | Auto       | os: 140   | .214     |             |          |         |
|                   | Left View:        | -90.0 degree    | S       |         | Mediun   | n Truck    | ks: 140   | .151     |             |          |         |
|                   | Right View:       | 90.0 degree     | S       |         | Heav     | y Truck    | ks: 140   | .157     |             |          |         |
| FHWA Noise Mod    | el Calculations   |                 |         |         |          |            |           |          |             |          |         |
| VehicleType       | REMEL             | Traffic Flow    | Dista   | nce     | Finite   | Road       | Fres      | nel      | Barrier Att | en Ber   | m Atten |
| Autos:            | 66.51             | 4.43            |         | -6.82   |          | -1.20      |           | -1.07    | 0.0         | 000      | 0.000   |
| Medium Trucks:    | 77.72             | -12.81          |         | -6.82   |          | -1.20      |           | -1.15    | 0.0         | 000      | 0.000   |
| Heavy Trucks:     | 82.99             | -16.77          |         | -6.82   |          | -1.20      |           | -1.35    | 0.0         | 000      | 0.000   |
| Unmitigated Nois  | e Levels (witho   | ut Topo and I   | barrier | attenu  | ation)   |            |           |          |             |          |         |
| VehicleType       | Leq Peak Hour     | Leq Day         | L       | .eq Eve | ening    | Leq        | Night     |          | Ldn         | C        | NEL     |
| Autos:            | 62.9              | 9 6             | 61.0    |         | 59.3     |            | 53.       | 2        | 61.8        | 3        | 62.4    |
| Medium Trucks:    | 56.9              | 9 5             | 5.4     |         | 49.0     |            | 47.       | 5        | 55.9        | )        | 56.2    |
| Heavy Trucks:     | 58.2              | 2 5             | 56.8    |         | 47.8     |            | 49.       | 0        | 57.4        | ŀ        | 57.5    |
| Vehicle Noise:    | 64.9              | 9 6             | 63.2    |         | 59.9     |            | 55.       | 4        | 63.9        | )        | 64.3    |
| Centerline Distan | ce to Noise Col   | ntour (in feet) |         |         |          |            |           |          |             |          |         |
|                   |                   |                 |         | 70 dE   | BA       | 65         | dBA       | (        | 60 dBA      | 55       | dBA     |
|                   |                   | L               | dn:     | 57      |          | 1          | 23        |          | 266         | 5        | 573     |
|                   |                   | CN              | IEL:    | 61      |          | 1          | 32        |          | 285         | 6        | 513     |
|                   |                   |                 |         |         |          |            |           |          |             |          |         |

Scenario: Existing With Project Road Name: Lincoln Bl. Road Segment: s/o Maxella Av.

| Rodd Ocyme        |                   | <b>¬</b> v.    |        |           |          |          |                  |           |             |          |         |
|-------------------|-------------------|----------------|--------|-----------|----------|----------|------------------|-----------|-------------|----------|---------|
| SITE              | SPECIFIC INF      | PUT DATA       |        |           |          | Ν        | IOISE            | MODE      |             | S        |         |
| Highway Data      |                   |                |        | S         | ite Con  | ditions  | (Hard =          | = 10, So  | oft = 15)   |          |         |
| Average Daily     | Traffic (Adt): 44 | 4,300 vehicles | S      |           |          |          |                  | Autos:    | 15          |          |         |
| Peak Hour         | Percentage:       | 10%            |        |           | Me       | dium Tru | ucks (2          | Axles):   | 15          |          |         |
| Peak H            | lour Volume:      | 4,430 vehicles | S      |           | He       | avy Truc | cks (3+          | Axles):   | 15          |          |         |
| Ve                | hicle Speed:      | 40 mph         |        | V         | ehicle l | Mix      |                  |           |             |          |         |
| Near/Far La       | ne Distance:      | 82 feet        |        |           | Vehi     | cleType  | )                | Day       | Evening     | Night    | Daily   |
| Site Data         |                   |                |        |           |          | ŀ        | Autos:           | 77.5%     | 12.9%       | 9.6%     | 97.42%  |
| Ba                | rrier Heiaht:     | 0.0 feet       |        |           | Me       | edium Ti | rucks:           | 84.8%     | 4.9%        | 10.3%    | 1.84%   |
| Barrier Type (0-W | /all, 1-Berm):    | 0.0            |        |           | F        | leavy Ti | rucks:           | 86.5%     | 2.7%        | 10.8%    | 0.74%   |
| Centerline Di     | st. to Barrier:   | 136.0 feet     |        | Ν         | loise Sc | ource El | levatior         | ns (in fe | eet)        |          |         |
| Centerline Dist.  | to Observer:      | 146.0 feet     |        |           |          | Auto     | s: 0             | .000      | /           |          |         |
| Barrier Distance  | to Observer:      | 10.0 feet      |        |           | Mediur   | n Truck  | s <sup>.</sup> 2 | 297       |             |          |         |
| Observer Height   | (Above Pad):      | 5.0 feet       |        |           | Heav     | v Truck  | s: 8             | .006      | Grade Ad    | iustment | : 0.0   |
| P                 | ad Elevation:     | 0.0 feet       |        |           |          | ,        |                  |           |             |          |         |
| Ro                | ad Elevation:     | 0.0 feet       |        | L         | ane Eq   | uivalen  | t Distan         | ice (in   | feet)       |          |         |
|                   | Road Grade:       | 0.0%           |        |           |          | Auto     | s: 140           | .214      |             |          |         |
|                   | Left View:        | -90.0 degree   | es     |           | Mediur   | n Truck  | s: 140           | .151      |             |          |         |
|                   | Right View:       | 90.0 degree    | es     |           | Heav     | y Truck  | s: 140           | .157      |             |          |         |
| FHWA Noise Mod    | el Calculations   |                |        |           |          |          |                  |           |             |          |         |
| VehicleType       | REMEL             | Traffic Flow   | Dis    | tance     | Finite   | Road     | Fres             | nel       | Barrier Att | en Ber   | m Atten |
| Autos:            | 66.51             | 5.02           |        | -6.82     |          | -1.20    |                  | -1.07     | 0.0         | 000      | 0.000   |
| Medium Trucks:    | 77.72             | -12.21         |        | -6.82     |          | -1.20    |                  | -1.15     | 0.0         | 000      | 0.000   |
| Heavy Trucks:     | 82.99             | -16.17         |        | -6.82     |          | -1.20    |                  | -1.35     | 0.0         | 000      | 0.000   |
| Unmitigated Nois  | e Levels (witho   | ut Topo and    | barrie | er attenu | uation)  |          |                  |           |             |          |         |
| VehicleType       | Leq Peak Hour     | Leq Day        | '      | Leq Ev    | ening    | Leq      | Night            |           | Ldn         | С        | NEL     |
| Autos:            | 63.5              | 5              | 61.6   |           | 59.9     |          | 53.              | 8         | 62.4        | 1        | 63.0    |
| Medium Trucks:    | 57.5              | 5              | 56.0   |           | 49.6     |          | 48.              | 1         | 56.5        | 5        | 56.8    |
| Heavy Trucks:     | 58.8              | 3              | 57.4   |           | 48.3     |          | 49.              | 6         | 58.0        | )        | 58.1    |
| Vehicle Noise:    | 65.5              | 5              | 63.8   |           | 60.5     |          | 56.              | 0         | 64.5        | 5        | 64.9    |
| Centerline Distan | ce to Noise Col   | ntour (in feet | )      |           |          |          |                  |           |             |          |         |
|                   |                   |                |        | 70 di     | BA       | 65       | dBA              | é         | 60 dBA      | 55       | dBA     |
|                   |                   |                | Ldn:   | 63        | )        | 1:       | 35               | I         | 291         | 6        | 28      |
|                   |                   | Cl             | VEL:   | 67        | ,        | 1        | 45               |           | 312         | 6        | 72      |
|                   |                   |                |        |           |          |          |                  |           |             |          |         |

Scenario: Existing With Project Road Name: Lincoln Bl. Road Segment: s/o Marina Expy.

| Noau Seyme        | ni. S/O Manna    | Ехру.          |         |           |           |          |                      |           |             |          |         |
|-------------------|------------------|----------------|---------|-----------|-----------|----------|----------------------|-----------|-------------|----------|---------|
| SITE              | SPECIFIC IN      | NPUT DATA      |         |           |           | Ν        | OISE                 | MODE      |             | S        |         |
| Highway Data      |                  |                |         | S         | Site Cond | ditions  | (Hard =              | = 10, So  | oft = 15)   |          |         |
| Average Daily     | Traffic (Adt):   | 34,500 vehicle | es      |           |           |          |                      | Autos:    | 15          |          |         |
| Peak Hour         | Percentage:      | 10%            |         |           | Mec       | lium Tru | icks (2              | Axles):   | 15          |          |         |
| Peak H            | lour Volume:     | 3,450 vehicle  | es      |           | Hea       | avy Truc | :ks (3+              | Axles):   | 15          |          |         |
| Ve                | hicle Speed:     | 40 mph         |         | V         | /ehicle N | lix      |                      |           |             |          |         |
| Near/Far La       | ne Distance:     | 82 feet        |         | -         | Vehic     | cleType  |                      | Day       | Evening     | Night    | Daily   |
| Site Data         |                  |                |         |           |           | A        | lutos:               | 77.5%     | 12.9%       | 9.6%     | 97.42%  |
| Ba                | rrier Heiaht:    | 0.0 feet       |         |           | Me        | dium Tr  | ucks:                | 84.8%     | 4.9%        | 10.3%    | 1.84%   |
| Barrier Type (0-V | /all, 1-Berm):   | 0.0            |         |           | Н         | leavy Tr | ucks:                | 86.5%     | 2.7%        | 10.8%    | 0.74%   |
| Centerline Di     | ist. to Barrier: | 136.0 feet     |         | ^         | loise So  | urce El  | evatior              | ns (in fe | eet)        |          |         |
| Centerline Dist.  | to Observer:     | 146.0 feet     |         |           |           |          | s <sup>.</sup> 0     | 000       | ,           |          |         |
| Barrier Distance  | to Observer:     | 10.0 feet      |         |           | Mediun    | n Trucks | s <sup>.</sup> 2     | 297       |             |          |         |
| Observer Height   | (Above Pad):     | 5.0 feet       |         |           | Heav      | / Trucks | <br>s <sup>.</sup> 8 | 006       | Grade Ad    | iustment | : 0.0   |
| P                 | ad Elevation:    | 0.0 feet       |         |           |           |          |                      |           |             |          |         |
| Ro                | ad Elevation:    | 0.0 feet       |         | L         | ane Equ   | ivalent  | Distan               | ce (in    | feet)       |          |         |
|                   | Road Grade:      | 0.0%           |         |           |           | Autos    | s: 140               | .214      |             |          |         |
|                   | Left View:       | -90.0 degre    | es      |           | Mediun    | n Trucks | s: 140               | .151      |             |          |         |
|                   | Right View:      | 90.0 degre     | es      |           | Heavy     | / Trucks | s: 140               | .157      |             |          |         |
| FHWA Noise Mod    | el Calculation   | IS             |         |           |           |          |                      |           |             |          |         |
| VehicleType       | REMEL            | Traffic Flow   | Dis     | stance    | Finite I  | Road     | Fres                 | nel       | Barrier Att | en Bei   | m Atten |
| Autos:            | 66.51            | 3.94           | ŀ       | -6.82     |           | -1.20    |                      | -1.07     | 0.0         | 000      | 0.000   |
| Medium Trucks:    | 77.72            | -13.30         | )       | -6.82     |           | -1.20    |                      | -1.15     | 0.0         | 000      | 0.000   |
| Heavy Trucks:     | 82.99            | -17.26         | 6       | -6.82     |           | -1.20    |                      | -1.35     | 0.0         | 000      | 0.000   |
| Unmitigated Nois  | e Levels (with   | out Topo and   | d barri | er attenu | uation)   |          |                      |           |             |          |         |
| VehicleType       | Leq Peak Hou     | ur Leq Da      | y       | Leq Ev    | ening     | Leq      | Night                |           | Ldn         | С        | NEL     |
| Autos:            | 62               | 2.4            | 60.5    |           | 58.8      |          | 52.                  | 7         | 61.3        | 3        | 61.9    |
| Medium Trucks:    | 56               | 5.4            | 54.9    |           | 48.5      |          | 47.                  | 0         | 55.4        | 1        | 55.7    |
| Heavy Trucks:     | 57               | <b>7</b> .7    | 56.3    |           | 47.3      |          | 48.                  | 5         | 56.9        | 9        | 57.0    |
| Vehicle Noise:    | 64               | 1.4            | 62.7    |           | 59.4      |          | 54.                  | 9         | 63.4        | 1        | 63.9    |
| Centerline Distan | ce to Noise Co   | ontour (in fee | et)     |           |           |          |                      |           |             |          |         |
|                   |                  |                |         | 70 d      | BA        | 65 (     | dBA                  | e         | 60 dBA      | 55       | dBA     |
|                   |                  |                | Ldn:    | 53        | 3         | 11       | 4                    |           | 247         | 5        | 531     |
|                   |                  | C              | NEL:    | 57        | ,         | 12       | 23                   |           | 264         | 5        | 69      |

Scenario: Existing With Project Road Name: W. Washington Bl. Road Segment: w/o Lincoln Bl. Project Name: Thatcher Job Number: 12185

|                          |                                          |                   |       | 1        |           |                      |          |          |             |          |        |
|--------------------------|------------------------------------------|-------------------|-------|----------|-----------|----------------------|----------|----------|-------------|----------|--------|
| SITE                     | SITE SPECIFIC INPUT DATA<br>lighway Data |                   |       |          |           | I                    | NOISE    | MODE     |             | S        |        |
| Highway Data             |                                          |                   |       |          | Site Con  | ditions              | s (Hard  | = 10, Se | oft = 15)   |          |        |
| Average Daily            | Traffic (Adt):                           | 23,700 vehicle    | S     |          |           |                      |          | Autos:   | 15          |          |        |
| Peak Hour                | Percentage:                              | 10%               |       |          | Med       | dium Ti              | rucks (2 | Axles):  | 15          |          |        |
| Peak H                   | our Volume:                              | 2,370 vehicle     | S     |          | Hea       | avy Tru              | ıcks (3+ | Axles):  | 15          |          |        |
| Ve                       | hicle Speed:                             | 35 mph            |       | -        | Vahiala   | Aix.                 |          |          |             |          |        |
| Near/Far La              | ne Distance:                             | 46 feet           |       | -        | Venicie I |                      | 0        | Dav      | Evoning     | Night    | Daily  |
| Cita Data                |                                          |                   |       |          | vern      | сіетур               |          |          |             |          | Daily  |
| Site Data                |                                          |                   |       |          | 140       | dium 7               | Autos:   | 04.00/   | 12.9%       | 9.6%     | 97.42% |
| Ba                       | rrier Height:                            | 0.0 feet          |       |          | IVIE      | aium i<br>Is su su s | TUCKS:   | 84.8%    | 6 4.9%      | 10.3%    | 1.84%  |
| Barrier Type (0-W        | /all, 1-Berm):                           | 0.0               |       |          |           | ieavy i              | rucks:   | 86.5%    | 5 2.7%      | 10.8%    | 0.74%  |
| Centerline Di            | ist. to Barrier:                         | 110.0 feet        |       |          | Noise So  | urce E               | levatio  | ns (in f | eet)        |          |        |
| Centerline Dist.         | to Observer:                             | 120.0 feet        |       |          |           | Auto                 | os: (    | .000     |             |          |        |
| Barrier Distance         | to Observer:                             | 10.0 feet         |       |          | Mediun    | n Truck              | ks: 2    | 2.297    |             |          |        |
| Observer Height          | (Above Pad):                             | 5.0 feet          |       |          | Heav      | v Truck              | ks: E    | 3.006    | Grade Ad    | iustment | 0.0    |
| P                        | ad Elevation:                            | 0.0 feet          |       | -        |           |                      |          |          |             |          |        |
| Ro                       | ad Elevation:                            | 0.0 feet          |       | -        | Lane Equ  | iivalen              | t Dista  | nce (in  | feet)       |          |        |
|                          | Road Grade:                              | 0.0%              |       |          |           | Auto                 | os: 117  | 7.881    |             |          |        |
|                          | Left View:                               | -90.0 degre       | es    |          | Mediun    | n Truck              | ks: 117  | 7.806    |             |          |        |
|                          | Right View:                              | 90.0 degre        | es    |          | Heav      | y Truck              | ks: 117  | 7.814    |             |          |        |
| EUWA Noise Med           | lal Calaulation                          |                   |       |          |           |                      |          |          |             |          |        |
| VohioloTypo              |                                          | S<br>Troffic Flow | Die   | stanco   | Finito    | Dood                 | Ero      | nol      | Parriar Att | on Bor   | mAtton |
| Venicie rype<br>Autos:   | 64 30                                    | 2.80              | Dis   |          |           | -1 20                | rie:     | _1.05    |             |          |        |
| Aulos.<br>Medium Trucks: | 75 75                                    | -14 35            |       | -5.0     | 59<br>50  | -1.20                |          | -1.05    | 0.0         | 000      | 0.000  |
| Heavy Trucks:            | P1 57                                    | -14.33            |       | -5.0     | 59<br>59  | 1.20                 |          | -1.15    | 0.0         |          | 0.000  |
| Tieavy Trucks.           | 01.57                                    | -10.31            |       | -5.0     | 99        | -1.20                |          | -1.40    | 0.0         | 000      | 0.000  |
| Unmitigated Nois         | e Levels (with                           | out Topo and      | barri | er attel | nuation)  |                      |          |          |             | 1        |        |
| VehicleType              | Leq Peak Hou                             | ur Leq Day        | /     | Leq E    | vening    | Leq                  | ı Night  |          | Ldn         | Cl       | VEL    |
| Autos:                   | 60                                       | .3                | 58.4  |          | 56.6      |                      | 50       | .6       | 59.2        | 2        | 59.8   |
| Medium Trucks:           | 54                                       | .5                | 53.0  |          | 46.6      |                      | 45       | .1       | 53.6        | 6        | 53.8   |
| Heavy Trucks:            | 56                                       | .4                | 55.0  |          | 45.9      |                      | 47       | .2       | 55.5        | 5        | 55.6   |
| Vehicle Noise:           | 62                                       | 5                 | 60.8  |          | 57.4      |                      | 53       | .0       | 61.5        | 5        | 61.9   |
| Centerline Distan        | ce to Noise Co                           | ontour (in feet   | t)    |          |           |                      |          |          |             |          |        |
|                          |                                          |                   |       | 70       | dBA       | 65                   | dBA      | (        | 60 dBA      | 55       | dBA    |
|                          |                                          |                   | Ldn:  | 3        | 33        |                      | 70       |          | 151         | 3        | 26     |
|                          |                                          | C                 | NEL:  | 3        | 35        |                      | 75       |          | 162         | 3        | 48     |
|                          |                                          |                   |       |          |           |                      |          |          |             |          |        |

Scenario: Existing With Project Road Name: W. Washington Bl. Road Segment: e/o Lincoln Bl. Project Name: Thatcher Job Number: 12185

|                    |                   | •••             |        |          |               |                   |          |          |             |          |          |
|--------------------|-------------------|-----------------|--------|----------|---------------|-------------------|----------|----------|-------------|----------|----------|
| SITE               | SPECIFIC INF      | PUT DATA        |        |          |               | I                 | NOISE    | MODE     | EL INPUT    | S        |          |
| Highway Data       |                   |                 |        |          | Site Con      | ditions           | s (Hard  | = 10, S  | oft = 15)   |          |          |
| Average Daily      | Traffic (Adt): 22 | 2,700 vehicles  | 5      |          |               |                   |          | Autos.   | 15          |          |          |
| Peak Hour          | Percentage:       | 10%             |        |          | Me            | dium Ti           | rucks (2 | Axles).  | : 15        |          |          |
| Peak H             | lour Volume: 2    | 2,270 vehicles  | 5      |          | He            | avy Tru           | ıcks (3+ | Axles).  | : 15        |          |          |
| Ve                 | hicle Speed:      | 35 mph          |        |          | Vehicle I     | Mix               |          |          |             |          |          |
| Near/Far La        | ne Distance:      | 46 feet         |        |          | Veh           | icleTyp           | е        | Day      | Evening     | Night    | Daily    |
| Site Data          |                   |                 |        |          |               |                   | Autos:   | 77.5%    | 6 12.9%     | 9.6%     | 97.42%   |
| Ba                 | rrier Heiaht:     | 0.0 feet        |        |          | Me            | edium T           | rucks:   | 84.8%    | 6 4.9%      | 10.3%    | 1.84%    |
| Barrier Type (0-W  | /all, 1-Berm):    | 0.0             |        |          | ŀ             | leavy T           | rucks:   | 86.5%    | 6 2.7%      | 10.8%    | 0.74%    |
| Centerline Di      | st. to Barrier:   | 110.0 feet      |        | _        | Noiso Sa      | urco F            | lovatio  | ns (in f | ioot)       |          |          |
| Centerline Dist.   | to Observer:      | 120.0 feet      |        |          | 10130 30      |                   |          |          | eelj        |          |          |
| Barrier Distance   | to Observer:      | 10.0 feet       |        |          | Modiu         | n Truck           |          | 207      |             |          |          |
| Observer Height (  | (Above Pad):      | 5.0 feet        |        |          | иеции<br>Цору | n nucr<br>v Trucl | 13.      | 2.237    | Grade Ad    | iustmen  | t· 0 0   |
| Pa                 | ad Elevation:     | 0.0 feet        |        |          | Tieav         | y mucr            | NS. 0    | 5.000    | Orace Au    | Justinen | . 0.0    |
| Roa                | ad Elevation:     | 0.0 feet        |        |          | Lane Eq       | uivalen           | nt Dista | nce (in  | feet)       |          |          |
|                    | Road Grade:       | 0.0%            |        |          |               | Auto              | os: 11   | 7.881    |             |          |          |
|                    | Left View:        | -90.0 degree    | s      |          | Mediur        | n Trucł           | ks: 11   | 7.806    |             |          |          |
|                    | Right View:       | 90.0 degree     | S      |          | Heav          | y Truck           | ks: 11   | 7.814    |             |          |          |
| FHWA Noise Mod     | el Calculations   |                 |        |          |               |                   |          |          |             |          |          |
| VehicleType        | REMEL             | Traffic Flow    | Dist   | tance    | Finite        | Road              | Fre      | snel     | Barrier Att | en Be    | rm Atten |
| Autos:             | 64.30             | 2.70            |        | -5.6     | 9             | -1.20             |          | -1.05    | 0.0         | 000      | 0.000    |
| Medium Trucks:     | 75.75             | -14.54          |        | -5.6     | 9             | -1.20             |          | -1.15    | 0.0         | 000      | 0.000    |
| Heavy Trucks:      | 81.57             | -18.49          |        | -5.6     | 9             | -1.20             |          | -1.40    | 0.0         | 000      | 0.000    |
| Unmitigated Noise  | e Levels (witho   | ut Topo and I   | barrie | er atter | uation)       |                   |          |          |             |          |          |
| VehicleType        | Leq Peak Hour     | Leq Day         |        | Leq E    | vening        | Leq               | ı Night  |          | Ldn         | C        | NEL      |
| Autos:             | 60.1              | 1 5             | 58.2   |          | 56.4          |                   | 50       | .4       | 59.0        | D        | 59.6     |
| Medium Trucks:     | 54.3              | 3 5             | 52.8   |          | 46.5          |                   | 44       | .9       | 53.4        | 4        | 53.6     |
| Heavy Trucks:      | 56.2              | 2 5             | 54.8   |          | 45.7          |                   | 47       | .0       | 55.3        | 3        | 55.5     |
| Vehicle Noise:     | 62.3              | 3 6             | 6.06   |          | 57.2          |                   | 52       | .8       | 61.3        | 3        | 61.8     |
| Centerline Distant | ce to Noise Cor   | ntour (in feet) |        |          |               |                   |          |          |             |          |          |
|                    |                   |                 |        | 70       | dBA           | 65                | dBA      |          | 60 dBA      | 55       | 5 dBA    |
|                    |                   | l               | _dn:   | 3        | 2             |                   | 68       |          | 147         | :        | 317      |
|                    |                   | CN              | IEL:   | 3        | 4             |                   | 73       |          | 157         | (        | 338      |

Scenario: Existing With Project Road Name: Jefferson Wy. Road Segment: w/o Lincoln Bl.

| nouu oogino       |                  | 1.               |            |           |                 |                   |                  |              |          |         |
|-------------------|------------------|------------------|------------|-----------|-----------------|-------------------|------------------|--------------|----------|---------|
| SITE              | SPECIFIC INP     | UT DATA          |            |           | NC              | DISE MO           | ODEL             | . INPUTS     | 5        |         |
| Highway Data      |                  |                  | S          | Site Con  | ditions (F      | lard = 1          | 0, Sof           | ft = 15)     |          |         |
| Average Daily     | Traffic (Adt): 2 | ,200 vehicles    |            |           |                 | Au                | utos:            | 15           |          |         |
| Peak Hour         | Percentage:      | 10%              |            | Me        | dium Truc       | ks (2 Ax          | des):            | 15           |          |         |
| Peak H            | our Volume:      | 220 vehicles     |            | He        | avy Truck       | s (3+ Ax          | des):            | 15           |          |         |
| Ve                | hicle Speed:     | 25 mph           |            | lahiala l | 1               |                   |                  |              |          |         |
| Near/Far La       | ne Distance:     | 12 feet          | V          | Venicie i | <b>VIIX</b>     |                   |                  | Evoning      | Night    | Daily   |
| Site Data         |                  |                  |            | ven       |                 |                   | 7 50/            |              |          |         |
| Site Data         |                  | _                |            | ٨ ٨       | AL<br>Daium Tru | nus. i<br>oko: 9. | 7.5%             | 12.9%        | 9.0%     | 97.42%  |
| Ba                | rrier Height:    | 0.0 feet         |            | IVIE      | Joon Tru        | cks. o            | 4.0%             | 4.9%         | 10.3%    | 0.74%   |
| Barrier Type (0-V | Vall, 1-Berm):   | 0.0              |            | Г         | leavy IIu       | CKS. O            | 0.3%             | 2.1%         | 10.6%    | 0.74%   |
| Centerline Di     | ist. to Barrier: | 60.0 feet        | ٨          | voise Sc  | ource Ele       | vations           | (in fee          | et)          |          |         |
| Centerline Dist.  | to Observer:     | 70.0 feet        |            |           | Autos:          | 0.00              | 00               |              |          |         |
| Barrier Distance  | to Observer:     | 10.0 feet        |            | Mediur    | n Trucks:       | 2.29              | 97               |              |          |         |
| Observer Height   | (Above Pad):     | 5.0 feet         |            | Heav      | y Trucks:       | 8.00              | )6 (             | Grade Adj    | ustment. | 0.0     |
|                   | ad Elevation:    | 0.0 feet         |            |           |                 | <b>N</b> :- (     | . /: <b>f</b> .  | 41           |          |         |
| Ro                | ad Elevation:    | 0.0 feet         | L          | .ane Eq   | uivaient L      | Jistance          | e (In te         | et)          |          |         |
|                   | Road Grade:      | 0.0%             |            |           | Autos:          | 69.92             | 21               |              |          |         |
|                   | Left View:       | -90.0 degrees    |            | Mediur    | n Trucks:       | 69.79             | 95               |              |          |         |
|                   | Right View:      | 90.0 degrees     |            | Heav      | y Trucks:       | 69.80             | )7               |              |          |         |
| EHWA Noise Mod    | lel Calculations |                  |            |           |                 |                   |                  |              |          |         |
| VehicleType       | REMEI            | Fraffic Flow Di  | stance     | Finite    | Road            | Fresne            | IF               | Rarrier Δtte | on Bor   | m Δtten |
| Autos:            | 58 73            | -5.97            | -2 20      |           | -1 20           |                   | י <u>ר</u><br>מא |              |          |         |
| Medium Trucks:    | 70.80            | -23 21           | -2.20      | ,<br>,    | -1 20           | - 1               | 1 15             | 0.0          | 00       | 0.000   |
| Heavy Trucks:     | 70.00            | -27 17           | -2.20      | ,<br>,    | -1 20           | - 1               | 1.61             | 0.0          | 00       | 0.000   |
| Theory Thucks.    | 11.51            | 27.17            | 2.20       | ,         | 1.20            |                   | 1.01             | 0.0          | .00      | 0.000   |
| Unmitigated Nois  | e Levels (withou | It Topo and barr | ier atteni | uation)   |                 |                   |                  |              |          |         |
| VehicleType       | Leq Peak Hour    | Leq Day          | Leq Ev     | rening    | Leq N           | ight              |                  | Ldn          | CI       | VEL     |
| Autos:            | 49.3             | 47.4             |            | 45.6      |                 | 39.6              |                  | 48.2         | <u>)</u> | 48.8    |
| Medium Trucks:    | 44.1             | 42.6             |            | 36.2      |                 | 34.7              |                  | 43.2         | <u>)</u> | 43.4    |
| Heavy Trucks:     | 47.3             | 45.9             |            | 36.9      |                 | 38.1              |                  | 46.5         | 0        | 46.6    |
| Vehicle Noise:    | 52.2             | 50.5             |            | 46.6      |                 | 42.7              |                  | 51.2         | 2        | 51.6    |
| Centerline Distan | ce to Noise Con  | tour (in feet)   |            |           |                 |                   |                  |              |          |         |
| <u> </u>          |                  |                  | 70 d       | IBA       | 65 dl           | BA                | 60               | ) dBA        | 55       | dBA     |
|                   |                  | Ldn:             | 4          |           | 8               | I                 |                  | 18           | 3        | 39      |
|                   |                  | CNEL:            | 4          | 4 9 19    |                 |                   | 2                | 11           |          |         |
|                   |                  |                  |            |           |                 |                   |                  |              |          |         |

Scenario: Existing With Project Road Name: Maxella Av. Road Segment: e/o Lincoln Bl.

#### Project Name: Thatcher Job Number: 12185

| Road Segme        | TIL. E/O LINCOIN B | l              |         |          |          |                    |          |          |              |           |         |
|-------------------|--------------------|----------------|---------|----------|----------|--------------------|----------|----------|--------------|-----------|---------|
| SITE              | SPECIFIC INP       | UT DATA        |         |          |          | NC                 |          | IODE     |              | S         |         |
| Highway Data      |                    |                |         | Sit      | e Cond   | itions (l          | Hard =   | 10, Sc   | oft = 15)    |           |         |
| Average Daily     | Traffic (Adt): 11  | ,300 vehicles  |         |          |          |                    | /        | Autos:   | 15           |           |         |
| Peak Hour         | Percentage:        | 10%            |         |          | Medi     | um Truc            | cks (2 A | (xles)   | 15           |           |         |
| Peak H            | our Volume: 1      | ,130 vehicles  |         |          | Hear     | /y Truck           | (3+ A    | Axles):  | 15           |           |         |
| Ve                | hicle Speed:       | 40 mph         |         | Vo       | hiclo M  | iv                 |          |          |              |           |         |
| Near/Far La       | ne Distance:       | 40 feet        |         | Vel      | Vehic    | <b>x</b><br>leType |          | Day      | Evening      | Night     | Daily   |
| Site Data         |                    |                |         |          |          | Αι                 | itos:    | 77.5%    | 12.9%        | 9.6%      | 97.42%  |
| Ba                | rrier Heiaht:      | 0.0 feet       |         |          | Med      | lium Tru           | icks:    | 84.8%    | 4.9%         | 10.3%     | 1.84%   |
| Barrier Type (0-W | /all, 1-Berm):     | 0.0            |         |          | He       | avy Tru            | icks:    | 86.5%    | 2.7%         | 10.8%     | 0.74%   |
| Centerline Di     | st. to Barrier:    | 100.0 feet     |         | No       | ise Sou  | ırce Ele           | vation   | s (in fe | et)          |           |         |
| Centerline Dist.  | to Observer:       | 110.0 feet     |         |          |          | Autos              | 0 (      | 000      |              |           |         |
| Barrier Distance  | to Observer:       | 10.0 feet      |         | /        | Medium   | Trucks             | 2.2      | 297      |              |           |         |
| Observer Height   | (Above Pad):       | 5.0 feet       |         |          | Heavy    | Trucks:            | 8.0      | 006      | Grade Ad     | iustment: | 0.0     |
| P                 | ad Elevation:      | 0.0 feet       |         | _        |          |                    |          |          | ,            |           |         |
| Ro                | ad Elevation:      | 0.0 feet       |         | Lai      | ne Equi  | valent             | Distand  | ce (in i | feet)        |           |         |
|                   | Road Grade:        | 0.0%           |         |          |          | Autos:             | 108.2    | 282      |              |           |         |
|                   | Left View:         | -90.0 degree   | S       | 1        | Medium   | Trucks:            | 108.2    | 200      |              |           |         |
|                   | Right View:        | 90.0 degree    | S       |          | Heavy    | Trucks:            | 108.2    | 208      |              |           |         |
| FHWA Noise Mod    | el Calculations    |                |         |          |          |                    |          |          |              |           |         |
| VehicleType       | REMEL 7            | Traffic Flow   | Dista   | nce      | Finite R | load               | Fresn    | el       | Barrier Atte | en Ber    | m Atten |
| Autos:            | 66.51              | -0.91          |         | -5.14    |          | -1.20              |          | -1.04    | 0.0          | 000       | 0.000   |
| Medium Trucks:    | 77.72              | -18.15         |         | -5.13    |          | -1.20              |          | -1.15    | 0.0          | 000       | 0.000   |
| Heavy Trucks:     | 82.99              | -22.10         |         | -5.13    |          | -1.20              |          | -1.43    | 0.0          | 000       | 0.000   |
| Unmitigated Nois  | e Levels (withou   | it Topo and I  | barrier | attenua  | tion)    |                    |          |          |              |           |         |
| VehicleType       | Leq Peak Hour      | Leq Day        | L       | .eq Ever | ning     | Leq N              | light    |          | Ldn          | CI        | VEL     |
| Autos:            | 59.3               | 5              | 57.4    |          | 55.6     |                    | 49.5     |          | 58.2         | 2         | 58.8    |
| Medium Trucks:    | 53.2               | 5              | 51.7    |          | 45.4     |                    | 43.8     |          | 52.3         | 3         | 52.5    |
| Heavy Trucks:     | 54.6               | 5              | 53.1    |          | 44.1     |                    | 45.4     |          | 53.7         | 7         | 53.8    |
| Vehicle Noise:    | 61.3               | 5              | 59.5    |          | 56.3     |                    | 51.7     | ,        | 60.3         | 3         | 60.7    |
| Centerline Distan | ce to Noise Con    | tour (in feet) |         |          |          |                    |          |          |              |           |         |
|                   |                    |                |         | 70 dB/   | 4        | 65 d               | BA       | 6        | 60 dBA       | 55        | dBA     |
|                   |                    | L              | .dn:    | 25       |          | 53                 |          |          | 114          | 2         | 46      |
|                   |                    | CN             | IEL:    | 26       |          | 57                 |          |          | 122          | 2         | 64      |

Scenario: Existing With Project Road Name: Marina Expy. Road Segment: e/o Lincoln Bl.

| Road Seyme        | nt. e/o Lincoir              | 1 DI.          |        |            |             |               |          |              |             |              |         |
|-------------------|------------------------------|----------------|--------|------------|-------------|---------------|----------|--------------|-------------|--------------|---------|
| SITE              | SPECIFIC I                   |                | 4      |            |             | NC            | DISE N   | /IODE        | L INPUT     | S            |         |
| Highway Data      |                              |                |        | S          | Site Condi  | itions (H     | lard =   | 10, Sc       | oft = 15)   |              |         |
| Average Daily     | Traffic (Adt):               | 22,300 vehic   | les    |            |             |               |          | Autos:       | 15          |              |         |
| Peak Hour         | Percentage:                  | 10%            |        |            | Medi        | um Truc       | :ks (2 A | xles):       | 15          |              |         |
| Peak F            | lour Volume:                 | 2,230 vehic    | les    |            | Heav        | y Truck       | s (3+ A  | xles):       | 15          |              |         |
| Ve                | hicle Speed:                 | 40 mph         |        | L.         | lahiala Mi  | <b>v</b>      |          |              |             |              |         |
| Near/Far La       | ne Distance:                 | 80 feet        |        | v          | Vehicle IVI |               |          | Dav          | Evoning     | Night        | Daily   |
| Sita Data         |                              |                |        |            | Verner      |               | itos:    | Day<br>77 5% | 12.0%       | 0.6%         | 07 12%  |
| Sile Dala         | • • • • • ·                  |                |        |            | Med         | AL<br>Ium Tru | rks.     | 84.8%        | 4 9%        | 9.0 <i>%</i> | 1 84%   |
| Ba                | rrier Height:                | 0.0 feet       |        |            | ivieu<br>Ho | avv Tru       | cks.     | 86 5%        | 2.3%        | 10.5%        | 0.74%   |
| Barrier Type (0-W | /all, 1-Berm):               | 0.0            |        |            | 110         | avy na        | 010.     | 00.570       | 2.7 /0      | 10.070       | 0.7470  |
| Centerline Di     | st. to Barrier:              | 104.0 feet     |        | Λ          | loise Sou   | rce Ele       | vation   | s (in fe     | et)         |              |         |
| Centerline Dist.  | to Observer:                 | 114.0 feet     |        |            |             | Autos:        | 0.0      | 000          |             |              |         |
| Barrier Distance  | to Observer:                 | 10.0 feet      |        |            | Medium      | Trucks:       | 2.2      | 297          |             |              |         |
| Observer Height   | ADOVE Pad):                  | 5.0 feet       |        |            | Heavy       | Trucks:       | 8.0      | 006          | Grade Ad    | iustment.    | 0.0     |
| P                 | ad Elevation.                | 0.0 feet       |        | 1          | ane Faui    | valent l      | Distan   | e (in t      | feet)       |              |         |
| RU(               | au Elevalion.<br>Pood Grado: |                |        |            | une Equi    |               | 106 2    | 260<br>260   |             |              |         |
|                   |                              | 0.0%           | roop   |            | Medium      | Trucks        | 106.     | 786          |             |              |         |
|                   | Right View:                  | -90.0 deg      | 1005   |            | Heavy       | Trucks:       | 106      | 794          |             |              |         |
|                   | ragin view.                  | 30.0 ueg       | 663    |            | neary       | rraono.       | 100.     | 104          |             |              |         |
| FHWA Noise Mod    | el Calculation               | ns             |        | I          |             |               |          |              |             |              |         |
| VehicleType       | REMEL                        | Traffic Flow   | / Di   | stance     | Finite R    | oad           | Fresn    | el           | Barrier Att | en Ber       | m Atten |
| Autos:            | 66.51                        | 1 2.0          | )4     | -5.05      | ; .         | -1.20         |          | -1.05        | 0.0         | 000          | 0.000   |
| Medium Trucks:    | 77.72                        | 2 -15.1        | 9      | -5.05      |             | -1.20         |          | -1.15        | 0.0         | 000          | 0.000   |
| Heavy Trucks:     | 82.99                        | 9 -19.1        | 5      | -5.05      | , .         | -1.20         |          | -1.42        | 0.0         | 000          | 0.000   |
| Unmitigated Nois  | e Levels (witl               | hout Topo ar   | d barr | ier attenu | uation)     |               |          |              |             |              |         |
| VehicleType       | Leq Peak Ho                  | our Leq D      | ay     | Leq Ev     | ening       | Leq N         | ight     |              | Ldn         | Cl           | VEL     |
| Autos:            | 62                           | 2.3            | 60.4   |            | 58.6        |               | 52.6     | ;            | 61.2        | 2            | 61.8    |
| Medium Trucks:    | 50                           | 6.3            | 54.8   |            | 48.4        |               | 46.9     |              | 55.3        | 3            | 55.6    |
| Heavy Trucks:     | 5                            | 7.6            | 56.2   |            | 47.1        |               | 48.4     |              | 56.7        | ,            | 56.9    |
| Vehicle Noise:    | 64                           | 4.3            | 62.6   |            | 59.3        |               | 54.8     |              | 63.3        | }            | 63.7    |
| Centerline Distan | ce to Noise C                | Contour (in fe | et)    |            |             |               |          |              |             |              |         |
|                   |                              |                |        | 70 d       | BA          | 65 dl         | BA       | 6            | 0 dBA       | 55           | dBA     |
|                   |                              |                | Ldn:   | 41         |             | 88            |          |              | 189         | 4            | 07      |
|                   |                              |                | CNEL:  | 44         | ŀ           | 94            |          |              | 202         | 4            | 36      |

Scenario: Future Without Project Road Name: Lincoln Bl. Road Segment: n/o W. Washington Bl. Project Name: Thatcher Job Number: 12185

| SITE              | SITE SPECIFIC INPUT DATA<br>lighway Data |                 |       |             |            |                     | NOISE             | MODE            |             | S        |         |
|-------------------|------------------------------------------|-----------------|-------|-------------|------------|---------------------|-------------------|-----------------|-------------|----------|---------|
| Highway Data      |                                          |                 |       |             | Site Cor   | ditions             | s (Hard           | = 10, S         | oft = 15)   |          |         |
| Average Daily     | Traffic (Adt): 3                         | 3,700 vehicle   | S     |             |            |                     |                   | Autos:          | 15          |          |         |
| Peak Hour         | Percentage:                              | 10%             |       |             | Ме         | dium T              | rucks (2          | Axles):         | 15          |          |         |
| Peak H            | our Volume:                              | 3,370 vehicle   | S     |             | He         | avy Tru             | ıcks (3+          | Axles):         | 15          |          |         |
| Ve                | hicle Speed:                             | 40 mph          |       | =           | Vahiala    | Mix                 |                   |                 |             |          |         |
| Near/Far La       | ne Distance:                             | 82 feet         |       | -           | Venicle    | icloTur             | 0                 | Dav             | Evoning     | Nicht    | Daily   |
| Site Data         |                                          |                 |       |             | ven        | юне і ур            | C<br>Autoor       | Day             |             |          | Dally   |
| Site Data         |                                          |                 |       |             | ٨.٨        | odium 7             | Aulos.<br>Frucko: | 77.3%<br>07.00/ | 0 12.9%     | 9.0%     | 97.42%  |
| Ba                | rrier Height:                            | 0.0 feet        |       |             | IVI        | eaium i<br>Joonni T | TUCKS.            | 04.0%           | 0 4.9%      | 10.3%    | 1.04%   |
| Barrier Type (0-W | Vall, 1-Berm):                           | 0.0             |       |             | I          | neavy I             | TUCKS:            | 80.5%           | o 2.1%      | 10.8%    | 0.74%   |
| Centerline Di     | ist. to Barrier:                         | 136.0 feet      |       |             | Noise S    | ource E             | levatio           | ns (in f        | eet)        |          |         |
| Centerline Dist.  | to Observer:                             | 146.0 feet      |       |             |            | Auto                | os: (             | 0.000           |             |          |         |
| Barrier Distance  | to Observer:                             | 10.0 feet       |       |             | Mediu      | m Trucl             | ks: 2             | 2.297           |             |          |         |
| Observer Height   | (Above Pad):                             | 5.0 feet        |       |             | Heav       | y Trucl             | ks: 8             | 3.006           | Grade Ad    | justment | : 0.0   |
| P                 | ad Elevation:                            | 0.0 feet        |       | -           | 1          | ·                   | 4 D'= (           |                 | f = = ()    |          |         |
| Ro                | ad Elevation:                            | 0.0 feet        |       | F           | Lane Eq    | uivaler             | It Dista          | nce (in         | reet)       |          |         |
|                   | Road Grade:                              | 0.0%            |       |             |            | Auto                | os: 140           | ).214           |             |          |         |
|                   | Left View:                               | -90.0 degre     | es    |             | Mediu      | m Trucl             | ks: 14(           | J.151           |             |          |         |
|                   | Right View:                              | 90.0 degre      | es    |             | Heav       | y Truck             | ks: 140           | ).157           |             |          |         |
| EHWA Noise Mod    | lel Calculation                          | 6               |       |             |            |                     |                   |                 |             |          |         |
| VehicleType       | REMEI                                    | Traffic Flow    | Dia   | stance      | Finito     | Road                | Fre               | snel            | Barrier ∆tt | en Rer   | m Atten |
| Autos             | 66 51                                    | 3.84            |       | -6 8        | 32         | -1 20               | 1100              | -1 07           |             | 000      | 0 000   |
| Medium Trucks:    | 77 72                                    | -13 40          |       | -6 8        | 32         | -1 20               |                   | -1 15           | 0.0         | 000      | 0.000   |
| Heavy Trucks:     | 82 99                                    | -17 36          |       | 9.0<br>R A- |            | -1 20               |                   | -1 35           | 0.0         | 000      | 0.000   |
| neavy nuona.      | 02.00                                    | 17.50           |       | 0.0         | · <b>-</b> | 1.20                |                   | 1.00            | 0.0         | ,        | 0.000   |
| Unmitigated Nois  | e Levels (with                           | out Topo and    | barri | er atter    | nuation)   |                     |                   |                 |             |          |         |
| VehicleType       | Leq Peak Hou                             | r Leq Day       | /     | Leq E       | vening     | Leq                 | n Night           |                 | Ldn         | C        | NEL     |
| Autos:            | 62.                                      | .3              | 60.4  |             | 58.7       |                     | 52                | .6              | 61.2        | 2        | 61.8    |
| Medium Trucks:    | 56.                                      | .3              | 54.8  |             | 48.4       |                     | 46                | .9              | 55.3        | 3        | 55.6    |
| Heavy Trucks:     | 57.                                      | .6              | 56.2  |             | 47.2       |                     | 48                | .4              | 56.8        | 3        | 56.9    |
| Vehicle Noise:    | 64.                                      | .3              | 62.6  |             | 59.3       |                     | 54                | .8              | 63.3        | 3        | 63.8    |
| Centerline Distan | ce to Noise Co                           | ontour (in feet | t)    |             |            |                     |                   |                 |             |          |         |
|                   |                                          |                 |       | 70          | dBA        | 65                  | i dBA             | (               | 60 dBA      | 55       | dBA     |
|                   |                                          |                 | Ldn:  | 5           | 52         |                     | 113               | I               | 243         | 5        | 23      |
|                   |                                          | C               | NEL:  | 5           | 56         |                     | 121               |                 | 260         | 5        | 60      |
|                   |                                          |                 |       |             |            |                     |                   |                 |             |          |         |

Scenario: Future Without Project Road Name: Lincoln Bl. Road Segment: s/o W. Washington Bl.

|                   |                   | 3              |        |          |                |              |         |          |             |          |          |
|-------------------|-------------------|----------------|--------|----------|----------------|--------------|---------|----------|-------------|----------|----------|
| SITE              | SPECIFIC INP      | UT DATA        |        |          |                | N            | OISE    | MODE     | L INPUT     | S        |          |
| Highway Data      |                   |                |        |          | Site Con       | ditions      | (Hard   | = 10, S  | oft = 15)   |          |          |
| Average Daily     | Traffic (Adt): 43 | 3,300 vehicles | 5      |          |                |              |         | Autos:   | 15          |          |          |
| Peak Hour         | Percentage:       | 10%            |        |          | Me             | dium Tru     | ucks (2 | Axles):  | 15          |          |          |
| Peak H            | our Volume: 4     | ,330 vehicles  | 6      |          | He             | avy Truc     | :ks (3+ | Axles):  | 15          |          |          |
| Ve                | hicle Speed:      | 40 mph         |        | -        | Vohiolo        | Miy          |         |          |             |          |          |
| Near/Far La       | ne Distance:      | 82 feet        |        | -        | Venicie        |              |         | Dav      | Evoning     | Night    | Daily    |
| Site Data         |                   |                |        |          | ven            | сте гуре     | Nutoor  |          |             |          |          |
| Site Data         |                   |                |        |          | <u>л</u> .     | A<br>Mium Tr | AULOS:  | 11.5%    |             | 9.0%     | 91.42%   |
| Ba                | rrier Height:     | 0.0 feet       |        |          | IVI<br>I       |              |         | 04.0%    | 0 4.9%      | 10.3%    | 1.04%    |
| Barrier Type (0-W | Vall, 1-Berm):    | 0.0            |        |          | r              | ieavy II     | UCKS.   | 00.0%    | o 2.1%      | 10.8%    | 0.74%    |
| Centerline Di     | st. to Barrier:   | 136.0 feet     |        |          | Noise So       | ource El     | evatio  | ns (in f | eet)        |          |          |
| Centerline Dist.  | to Observer:      | 146.0 feet     |        |          |                | Autos        | s: (    | 0.000    |             |          |          |
| Barrier Distance  | to Observer:      | 10.0 feet      |        |          | Mediu          | m Trucks     | s: 2    | 2.297    |             |          |          |
| Observer Height   | (Above Pad):      | 5.0 feet       |        |          | Heav           | y Trucks     | s: 8    | 3.006    | Grade Ad    | justment | : 0.0    |
| P                 | ad Elevation:     | 0.0 feet       |        | -        | 1              |              | D:-+-   | naa /!   | fo o 4)     |          |          |
| Ro                | ad Elevation:     | 0.0 feet       |        | -        | Lane Eq        | uivaient     | Dista   | nce (in  | reet)       |          |          |
|                   | Road Grade:       | 0.0%           |        |          |                | Autos        | s: 140  | ).214    |             |          |          |
|                   | Left View:        | -90.0 degree   | es     |          | Mediu          | m Trucks     | s: 140  | J.151    |             |          |          |
|                   | Right View:       | 90.0 degree    | es     |          | Heav           | y Trucks     | s: 140  | ).157    |             |          |          |
| FHWA Noise Mod    | el Calculations   |                |        |          |                |              |         |          |             |          |          |
| VehicleType       | REMEL             | Traffic Flow   | Disi   | tance    | Finite         | Road         | Fre     | snel     | Barrier Att | en Ber   | rm Atten |
| Autos:            | 66.51             | 4.93           |        | -6.8     | 32             | -1.20        |         | -1.07    | 0.0         | 000      | 0.000    |
| Medium Trucks:    | 77.72             | -12.31         |        | -6.8     | 32             | -1.20        |         | -1.15    | 0.0         | 000      | 0.000    |
| Heavy Trucks:     | 82.99             | -16.27         |        | -6.8     | 32             | -1.20        |         | -1.35    | 0.0         | 000      | 0.000    |
| Unmitigated Nois  | e Levels (withou  | ut Topo and    | barrie | er atter | nuation)       |              |         |          |             |          |          |
| VehicleType       | Leq Peak Hour     | Leq Day        |        | Leq E    | vening         | Leq          | Night   |          | Ldn         | С        | NEL      |
| Autos:            | 63.4              | . (            | 61.5   |          | 59.8           |              | 53      | .7       | 62.3        | 3        | 62.9     |
| Medium Trucks:    | 57.4              |                | 55.9   |          | 49.5           |              | 48      | .0       | 56.4        | 4        | 56.7     |
| Heavy Trucks:     | 58.7              | · į            | 57.3   |          | 48.2           |              | 49      | .5       | 57.9        | 9        | 58.0     |
| Vehicle Noise:    | 65.4              | . (            | 63.7   |          | 60.4           |              | 55      | .9       | 64.4        | 4        | 64.8     |
| Centerline Distan | ce to Noise Con   | tour (in feet) | )      |          |                |              |         |          |             |          |          |
| L                 |                   |                |        | 70       | dBA            | 65           | dBA     | (        | 60 dBA      | 55       | dBA      |
|                   |                   |                | Ldn:   | 6        | 62             | 1:           | 33      | I        | 287         | 6        | 518      |
|                   |                   | CN             | IEL:   | 6        | 66 143 307 662 |              |         |          |             | 62       |          |
|                   |                   |                |        |          |                |              |         |          |             |          |          |

Scenario: Future Without Project Road Name: Lincoln Bl. Road Segment: n/o Jefferson Wy.

| Noau Seyme        | nt. n/o Jeneiso  | ii vvy.        |        |           |          |                   |               |          |             |          |         |
|-------------------|------------------|----------------|--------|-----------|----------|-------------------|---------------|----------|-------------|----------|---------|
| SITE              | SPECIFIC IN      | PUT DATA       |        |           |          | Ν                 | OISE          | MODE     |             | s        |         |
| Highway Data      |                  |                |        | S         | ite Con  | ditions           | (Hard =       | = 10, So | oft = 15)   |          |         |
| Average Daily     | Traffic (Adt): 4 | 4,200 vehicle  | S      |           |          |                   |               | Autos:   | 15          |          |         |
| Peak Hour         | Percentage:      | 10%            |        |           | Me       | dium Tru          | icks (2       | Axles):  | 15          |          |         |
| Peak H            | lour Volume:     | 4,420 vehicle  | S      |           | He       | avy Truc          | :ks (3+ )     | Axles):  | 15          |          |         |
| Ve                | hicle Speed:     | 40 mph         |        | V         | ahicla I | Miv               |               |          |             |          |         |
| Near/Far La       | ne Distance:     | 82 feet        |        |           | Veh      | icleType          |               | Day      | Evening     | Night    | Daily   |
| Site Data         |                  |                |        |           |          | A                 | Autos:        | 77.5%    | 12.9%       | 9.6%     | 97.42%  |
| Ba                | rrier Height:    | 0.0 feet       |        |           | Me       | ədium Tr          | ucks:         | 84.8%    | 4.9%        | 10.3%    | 1.84%   |
| Barrier Type (0-W | /all, 1-Berm):   | 0.0            |        |           | ŀ        | leavy Tr          | ucks:         | 86.5%    | 2.7%        | 10.8%    | 0.74%   |
| Centerline Di     | st. to Barrier:  | 136.0 feet     |        | A         | laisa Se | urco El           | ovation       | nc (in f |             |          |         |
| Centerline Dist.  | to Observer:     | 146.0 feet     |        | /         | 0138 30  |                   |               |          |             |          |         |
| Barrier Distance  | to Observer:     | 10.0 feet      |        |           | Modiu    | Aulos<br>m Trucks | s. 0.<br>     | 207      |             |          |         |
| Observer Height ( | (Above Pad):     | 5.0 feet       |        |           | Hoay     | n Trucks          | s. 2.<br>s. 8 | 006      | Grade Ad    | iustment | · 0.0   |
| Pa                | ad Elevation:    | 0.0 feet       |        |           | Tieav    | y mucha           | s. 0.         | 000      | Crade ridj  | Justinon | . 0.0   |
| Roa               | ad Elevation:    | 0.0 feet       |        | L         | ane Eq   | uivalent          | Distan        | ce (in   | feet)       |          |         |
|                   | Road Grade:      | 0.0%           |        |           |          | Autos             | s: 140        | .214     |             |          |         |
|                   | Left View:       | -90.0 degre    | es     |           | Mediur   | n Trucks          | s: 140        | .151     |             |          |         |
|                   | Right View:      | 90.0 degre     | es     |           | Heav     | ry Trucks         | s: 140        | .157     |             |          |         |
| FHWA Noise Mod    | el Calculations  | 5              |        |           |          |                   |               |          |             |          |         |
| VehicleType       | REMEL            | Traffic Flow   | Dis    | tance     | Finite   | Road              | Fres          | nel      | Barrier Att | en Bei   | m Atten |
| Autos:            | 66.51            | 5.01           |        | -6.82     | I        | -1.20             |               | -1.07    | 0.0         | 000      | 0.000   |
| Medium Trucks:    | 77.72            | -12.22         |        | -6.82     |          | -1.20             |               | -1.15    | 0.0         | 000      | 0.000   |
| Heavy Trucks:     | 82.99            | -16.18         |        | -6.82     |          | -1.20             |               | -1.35    | 0.0         | 000      | 0.000   |
| Unmitigated Nois  | e Levels (with   | out Topo and   | barrie | er attenu | uation)  |                   |               |          |             |          |         |
| VehicleType       | Leq Peak Hou     | r Leq Day      | /      | Leq Eve   | ening    | Leq               | Night         |          | Ldn         | С        | NEL     |
| Autos:            | 63.              | 5              | 61.6   |           | 59.8     |                   | 53.           | 8        | 62.4        | 1        | 63.0    |
| Medium Trucks:    | 57.              | 5              | 56.0   |           | 49.6     |                   | 48.           | 1        | 56.5        | 5        | 56.8    |
| Heavy Trucks:     | 58.              | 8              | 57.4   |           | 48.3     |                   | 49.           | 6        | 57.9        | 9        | 58.1    |
| Vehicle Noise:    | 65.              | 5              | 63.8   |           | 60.5     |                   | 56.           | 0        | 64.5        | 5        | 64.9    |
| Centerline Distan | ce to Noise Co   | ntour (in feet | t)     |           |          |                   |               |          |             |          |         |
|                   |                  |                |        | 70 dl     | BA       | 65 0              | dBA           | 6        | 60 dBA      | 55       | dBA     |
|                   |                  |                | Ldn:   | 63        |          | 13                | 35            |          | 291         | 6        | 627     |
|                   |                  | C              | NEL:   | 67        |          | 14                | 45            |          | 311         | 6        | 571     |

Scenario: Future Without Project Road Name: Lincoln Bl. Road Segment: s/o Jefferson Wy. Project Name: Thatcher Job Number: 12185

| SITE              | SPECIFIC IN      | PUT DATA        |       |          |                |         | NOISE     | MODE        | L INPUT                                                                                     | S        |         |
|-------------------|------------------|-----------------|-------|----------|----------------|---------|-----------|-------------|---------------------------------------------------------------------------------------------|----------|---------|
| Highway Data      |                  |                 |       |          | Site Con       | ditions | s (Hard : | = 10, S     | oft = 15)                                                                                   |          |         |
| Average Daily     | Traffic (Adt): 4 | 14,100 vehicle  | s     |          |                |         |           | Autos:      | 15                                                                                          |          |         |
| Peak Hour         | Percentage:      | 10%             |       |          | Me             | dium T  | rucks (2  | Axles):     | 15                                                                                          |          |         |
| Peak H            | lour Volume:     | 4,410 vehicle   | s     |          | He             | avy Tru | ıcks (3+  | Axles):     | 15                                                                                          |          |         |
| Ve                | hicle Speed:     | 40 mph          |       | _        | Vehicle        | Mix     |           |             |                                                                                             |          |         |
| Near/Far La       | ne Distance:     | 82 feet         |       | _        | Veh            | icleTvp | е         | Dav         | Evenina                                                                                     | Niaht    | Dailv   |
| Site Data         |                  |                 |       |          |                | ,,      | Autos:    | 77.5%       | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | 9.6%     | 97.42%  |
| Ba                | rrier Height     | 0.0 feet        |       |          | M              | edium T | Trucks:   | 84.8%       | <b>4.9%</b>                                                                                 | 10.3%    | 1.84%   |
| Barrier Type (0-V | Vall. 1-Berm):   | 0.0             |       |          | ŀ              | leavy T | Trucks:   | 86.5%       | <i>б</i> 2.7%                                                                               | 10.8%    | 0.74%   |
| Centerline Di     | ist. to Barrier: | 136.0 feet      |       | -        | Naina Cr       |         |           | (: <b>f</b> | (a a 4)                                                                                     |          |         |
| Centerline Dist.  | to Observer:     | 146.0 feet      |       | _        | Noise So       | burce E | evatio    | ns (in t    | eet)                                                                                        |          |         |
| Barrier Distance  | to Observer:     | 10.0 feet       |       |          |                | Auto    | os: 0     | .000        |                                                                                             |          |         |
| Observer Height   | (Above Pad):     | 5.0 feet        |       |          | Mediui         | m Truck | ks: 2     | .297        | Over ele A el                                                                               |          |         |
| P                 | ad Elevation:    | 0.0 feet        |       |          | Heav           | y Truci | ks: 8     | .006        | Grade Ad                                                                                    | justment | 2 0.0   |
| Ro                | ad Elevation:    | 0.0 feet        |       |          | Lane Eq        | uivaler | nt Distai | nce (in     | feet)                                                                                       |          |         |
|                   | Road Grade:      | 0.0%            |       |          |                | Auto    | os: 140   | .214        |                                                                                             |          |         |
|                   | Left View:       | -90.0 degre     | es    |          | Mediu          | m Trucl | ks: 140   | .151        |                                                                                             |          |         |
|                   | Right View:      | 90.0 degre      | es    |          | Heav           | y Trucl | ks: 140   | .157        |                                                                                             |          |         |
|                   |                  |                 |       |          |                |         |           |             |                                                                                             |          |         |
| FHWA Noise Mod    | el Calculation   | s<br>           |       |          |                | _ ,     | _         |             | <b>D</b> 1 40                                                                               |          | • • •   |
| Vehicle I ype     | REMEL            | I raffic Flow   | Dis   | stance   | Finite         | Road    | Fres      | nel         | Barrier Att                                                                                 | en Bei   | m Atten |
| Autos:            | 66.51            | 5.00            |       | -6.8     | 2              | -1.20   |           | -1.07       | 0.0                                                                                         | 000      | 0.000   |
| Medium Trucks:    | 11.12            | -12.23          |       | -6.8     | 2              | -1.20   |           | -1.15       | 0.0                                                                                         | 000      | 0.000   |
| Heavy Trucks:     | 82.99            | -16.19          |       | -6.8     | 52             | -1.20   |           | -1.35       | 0.0                                                                                         | 000      | 0.000   |
| Unmitigated Nois  | e Levels (with   | out Topo and    | barri | er atter | nuation)       |         |           |             |                                                                                             |          |         |
| VehicleType       | Leq Peak Hou     | r Leq Day       | /     | Leq E    | vening         | Leq     | n Night   |             | Ldn                                                                                         | C        | NEL     |
| Autos:            | 63.              | .5              | 61.6  |          | 59.8           |         | 53.       | 8           | 62.4                                                                                        | 4        | 63.0    |
| Medium Trucks:    | 57.              | .5              | 56.0  |          | 49.6           |         | 48.       | 0           | 56.5                                                                                        | 5        | 56.7    |
| Heavy Trucks:     | 58.              | .8              | 57.4  |          | 48.3           |         | 49.       | 6           | 57.9                                                                                        | 9        | 58.1    |
| Vehicle Noise:    | 65.              | .5              | 63.8  |          | 60.5           |         | 55        | 9           | 64.5                                                                                        | 5        | 64.9    |
| Centerline Distan | ce to Noise Co   | ontour (in feet | t)    |          |                |         |           |             |                                                                                             |          |         |
| L                 |                  |                 |       | 70       | dBA            | 65      | dBA       | (           | 60 dBA                                                                                      | 55       | dBA     |
|                   |                  |                 | Ldn:  | 6        | 63             |         | 135       | I           | 290                                                                                         | 6        | 626     |
|                   |                  | C               | NEL:  | 6        | 67 144 311 670 |         |           |             |                                                                                             | 670      |         |
|                   |                  |                 |       |          |                |         |           |             |                                                                                             |          |         |

Scenario: Future Without Project Road Name: Lincoln Bl. Road Segment: n/o Maxella Av.

| SITE SPECIFIC INPUT DATA       NOISE MODEL INPUTS         Highway Data       Site Conditions (Hard = 10, Soft = 15)         Average Daily Traffic (Adt): 40,900 vehicles       Autos:: 15         Peak Hour Vercentage:       10%         Peak Hour Volume:       4,090 vehicles         Vehicle Speed:       40 mph         Near/Far Lane Distance:       82 feet         Site Data       Autos:         Barrier Height:       0.0 feet         Barrier Type (0-Wall, 1-Berm):       0.0         Centerline Dist. to Barrier:       136.0 feet         Barrier Distance to Observer:       10.0 feet         Road Grade:       0.0 feet         Road Elevation:       0.0 feet         Road Elevation:       0.0 feet         Road Elevation:       0.0 feet         Road Claulations       Pad Elevation:         VehicleType       REMEL         Right View:       90.0 degrees         Heavy Trucks:       140.157         Heavy Trucks:       140.157 <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                               |                         |         | -       |            |         |                    | -        |             |           |         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------|-------------------------|---------|---------|------------|---------|--------------------|----------|-------------|-----------|---------|
| Hignway Data       Site Conditions (Hard = 10, Soft = 15)         Average Daily Traffic (Adt): 40,900 vehicles       15         Peak Hour Percentage:       10%         Peak Hour Volume:       4,090 vehicles         Vehicle Speed:       40 mph         Neat/Far Lane Distance:       82 feet         Site Data       Autos: 15         Barrier Height:       0.0 feet         Barrier Type (0-Wall, 1-Berm):       0.0         Centerline Dist. to Dserver:       136.0 feet         Centerline Dist. to Observer:       136.0 feet         Barrier Height:       0.0 feet         Barrier Jostance to Observer:       10.0 feet         Road Elevation:       0.0 feet         Road Elevation:       0.0 feet         Road Grade:       0.0%         Autos:       140.015         Heavy Trucks:       8.006         Grade:       0.0%         Autos:       140.151         Heavy Trucks:       140.151         Heavy Trucks:       140.151         FHWA Noise Model Calculations       0.0 degrees         VehicleType       REMEL       Traffic Flow       Distance         Autos: <td< th=""><th>SITE</th><th colspan="5">SITE SPECIFIC INPUT DATA</th><th>N</th><th>OISE</th><th>MODE</th><th></th><th>S</th><th></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SITE              | SITE SPECIFIC INPUT DATA      |                         |         |         |            | N       | OISE               | MODE     |             | S         |         |
| Average Daily Traffic (Adt): 40,900 vehicles     Autos: 15       Peak Hour Percentage:     10%       Peak Hour Volume:     4,090 vehicles       Vehicle Speed:     40 mph       Near/Far Lane Distance:     82 feet       Site Data     Autos:     77.5%       Barrier Height:     0.0 feet       Barrier Type (0-Wall, 1-Berm):     0.0       Centerline Dist. to Barrier:     136.0 feet       Barrier Distance to Observer:     146.0 feet       Centerline Dist. to Observer:     10.0 feet       Barrier Height:     0.0 feet       Rarier Distance to Observer:     10.0 feet       Road Elevation:     0.0 feet       Road Grade:     0.0%       Read Grade:     0.0%       Read Grade:     0.0%       Road Grade:     0.0%       Right View:     90.0 degrees       Right View:     90.0 degrees       Right View:     90.0 degrees       Heavy Trucks:     140.151       Heavy Trucks:     140.151       Heavy Trucks:     140.151       Heavy Trucks:     140.214       Medium Trucks:     140.214       Medium Truc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Highway Data      |                               |                         |         |         | Site Con   | ditions | (Hard :            | = 10, So | ott = 15)   |           |         |
| Peak Hour Percentage:       10%       Medium Trucks (2 Axles):       15         Peak Hour Volume:       4,090 vehicles       Medium Trucks (3 Axles):       15         Vehicle Speed:       40 mph       Vehicle Type       Day       Evening       Night       Daily         Site Data       Autos:       77.5%       12.9%       9.6%       97.42%         Barrier Height:       0.0 feet       Autos:       77.5%       12.9%       9.6%       97.42%         Barrier Type (0-Wall, 1-Berm):       0.0       Autos:       77.5%       12.9%       9.6%       97.42%         Centerline Dist. to Daserver:       146.0 feet       Autos:       0.00       Roise Source Elevations (in feet)       Noise Source Elevations (in feet)         Observer Height (Above Pad):       5.0 feet       Autos:       0.00       Medium Trucks:       2.297         Observer Height (Mobve Pad):       5.0 feet       Autos:       10.0 feet       Autos:       10.0 feet         Road Elevation:       0.0 feet       Autos:       140.151       Heavy Trucks:       8.006       Grade Adjustment:       0.0         Wehicle Type       REMEL       Traffic Flow       Distance       Fini                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Average Daily     | Traffic (Adt): 40             | ,900 vehicles           | 6       |         |            |         |                    | Autos:   | 15          |           |         |
| Peak Hour Volume:       4,090 vehicles<br>Vehicle Speed:       Heavy Trucks (3+ Axles):       15         Near/Far Lane Distance:       82 feet       Vehicle Mix       Vehicle Type       Day       Evening       Night       Daily         Site Data       Autos:       77.5%       12.9%       9.6%       97.42%         Barrier Height:       0.0 feet       Autos:       77.5%       12.9%       9.6%       97.42%         Barrier Type (0-Wall, 1-Berm):       0.0 feet       Medium Trucks:       84.8%       4.9%       10.3%       1.84%         Barrier Distance to Observer:       10.0 feet       Moise Source Elevations (in feet)       Noise Source Elevations (in feet)       Noise Source Ilevations (in feet)         Road Grade:       0.0%       Autos:       140.214       Medium Trucks:       8.006       Grade Adjustment:       0.0         EHWA Noise Model Calculations       Quoto degrees       Finite Road       Fresnel       Barrier Atten       Berm Atten         Vehicle Type       REMEL       Traffic Flow       Distance       Finite Road       Fresnel       Barrier Atten       Berm Atten         Medium Trucks:       82.99       -16.52       -6.82       -1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Peak Hour         | Percentage:                   | 10%                     |         |         | Med        | dium Tr | ucks (2            | Axles):  | 15          |           |         |
| Vehicle Speed:<br>Near/Far Lane Distance:       40 mph<br>82 feet       Vehicle Mix         Vehicle Type       Day       Evening       Night       Daily         Site Data       Autos:       77.5%       12.9%       9.6%       97.42%         Barrier Height:<br>Barrier Type (0-Wall, 1-Berm):       0.0       Autos:       77.5%       12.9%       9.6%       97.42%         Centerline Dist. to Barrier:       136.0 feet       Noise Source Elevations (in feet)       Noise Source Elevations (in feet)         Disterver:       146.0 feet       Moise Source Elevations (in feet)       Noise Source Elevations (in feet)         Observer:       10.0 feet       Medium Trucks:       2.297       Noise Source Elevations (in feet)         Barrier Distance to Observer:       0.0 feet       Autos:       0.000       Medium Trucks:       140.214         Road Grade:       0.0%       Autos:       140.214       Medium Trucks:       140.151         Heavy Trucks:       140.151       Heavy Trucks:       140.151       Heavy Trucks:       140.010         Road Grade:       0.0%       Grade State       0.000       O.000       0.000         Heavy Trucks:       140.151       Heavy Trucks: <th< td=""><td>Peak F</td><td>our Volume: 4</td><td>,090 vehicles</td><td>6</td><td></td><td>Hea</td><td>avy Tru</td><td>cks (3+</td><td>Axles):</td><td>15</td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Peak F            | our Volume: 4                 | ,090 vehicles           | 6       |         | Hea        | avy Tru | cks (3+            | Axles):  | 15          |           |         |
| Near/Far Lane Distance:       82 feet       Noise Type       Day       Evening       Night       Daily         Site Data       Autos:       77.5%       12.9%       9.6%       97.42%         Barrier Height:       0.0 feet       Autos:       77.5%       12.9%       9.6%       97.42%         Barrier Type (0-Wall, 1-Berm):       0.0       Medium Trucks:       84.8%       4.9%       10.3%       1.84%         Centerline Dist. to Dserver:       136.0 feet       Moise Source Elevations (in feet)       0.0%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%       0.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ve                | hicle Speed:                  | 40 mph                  |         |         | Vehicle II | /ix     |                    |          |             |           |         |
| Site Data       Autos:       77.5%       12.9%       9.6%       97.42%         Barrier Height:       0.0       feet       Medium Trucks:       84.8%       4.9%       10.3%       1.84%         Barrier Type (0-Wall, 1-Berm):       0.0       Centerline Dist. to Barrier:       136.0 feet       Medium Trucks:       84.8%       4.9%       10.3%       1.84%         Barrier Distance to Observer:       10.0 feet       Moise Source Elevations (in feet)       Autos:       0.00         Pad Elevation:       0.0 feet       Autos:       0.00       Medium Trucks:       2.297         Observer Height (Above Pad):       5.0 feet       Autos:       140.0151       Medium Trucks:       140.214         Road Elevation:       0.0 feet       Autos:       140.214       Medium Trucks:       140.214         Road Grade:       0.0%       Autos:       140.214       Medium Trucks:       140.157         FHWA Noise Model Calculations       Traffic Flow       Distance       Finite Road       Fresnel       Barrier Atten       Berm Atten         Autos:       66.51       4.68       -6.82       -1.20       -1.15       0.000       0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Near/Far La       | ne Distance:                  | 82 feet                 |         |         | Vehi       | cleTvpe | 9                  | Dav      | Evenina     | Niaht     | Dailv   |
| Barrier Height:       0.0 feet         Barrier Type (0-Wall, 1-Berm):       0.0         Centerline Dist. to Barrier:       136.0 feet         Centerline Dist. to Observer:       146.0 feet         Barrier Distance to Observer:       10.0 feet         Observer Height (Above Pad):       5.0 feet         Pad Elevation:       0.0 feet         Road Elevation:       0.0 feet         Road Grade:       0.0%         Left View:       -90.0 degrees         Right View:       90.0 degrees         Right View:       90.0 degrees         Vehicle Type       REMEL       Traffic Flow         Autos:       66.51       4.68         Autos:       71.20       -1.07         Medium Trucks:       82.99         -16.52       -6.82         -1.20       -1.15         Medium Trucks:       53.4         62.1       4.68         -6.82       -1.20         -1.35       0.000         Medium Trucks:       53.4         62.1       4.62         Autos:       63.2         65.5       53.4         62.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Site Data         |                               |                         |         |         |            |         | Autos:             | 77.5%    | 12.9%       | 9.6%      | 97.42%  |
| Barrier Type (0-Wall, 1-Berm):       0.0         Barrier Type (0-Wall, 1-Berm):       0.0         Centerline Dist. to Barrier:       136.0 feet         Barrier Dist. to Observer:       146.0 feet         Barrier Distance to Observer:       10.0 feet         Observer Height (Above Pad):       5.0 feet         Pad Elevation:       0.0 feet         Road Elevation:       0.0 feet         Road Grade:       0.0%         Autos:       140.214         Medium Trucks:       140.151         Road Grade:       0.0%         Autos:       140.151         Heavy Trucks:       140.157         FHWA Noise Model Calculations       Distance       Finite Road       Fresnel       Barrier Atten       Berm Atten         Autos:       66.51       4.68       -6.82       -1.20       -1.15       0.000       0.000         Medium Trucks:       82.99       -16.52       -6.82       -1.20       -1.35       0.000       0.000 <td>Ba</td> <td>rriar Haight:</td> <td>0.0 foot</td> <td></td> <td></td> <td>Ме</td> <td>dium T</td> <td>rucks:</td> <td>84.8%</td> <td>4.9%</td> <td>10.3%</td> <td>1.84%</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ba                | rriar Haight:                 | 0.0 foot                |         |         | Ме         | dium T  | rucks:             | 84.8%    | 4.9%        | 10.3%     | 1.84%   |
| Centerline Dist. to Barrier:     136.0 feet       Centerline Dist. to Observer:     146.0 feet       Barrier Distance to Observer:     10.0 feet       Pad Elevation:     0.0 feet       Road Elevation:     0.0 feet       Road Grade:     0.0%       Autos:     140.214       Medium Trucks:     140.151       Road Grade:     0.0%       Autos:     140.151       Road Grade:     0.0%       Autos:     140.151       Right View:     90.0 degrees       VehicleType     REMEL     Traffic Flow       VehicleType     REMEL     Traffic Flow       Autos:     66.51     4.68       -6.82     -1.20     -1.07       Autos:     62.2     -6.82       -1.20     -1.15     0.000       Medium Trucks:     77.72     -12.56       -6.82     -1.20     -1.35     0.000       Medium Trucks:     63.2     61.3     59.5     53.4     62.1     62.7       Medium Trucks:     57.1     55.6     64.2     64.2     64.2       Autos:     63.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Barriar Type (0-M | /all_1_Borm):                 |                         |         |         | H          | leavy T | rucks:             | 86.5%    | 2.7%        | 10.8%     | 0.74%   |
| Noise       Source       Sourc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Centerline Di     | ist to Barrier:               | 0.0<br>136.0 feet       |         |         |            |         |                    |          |             |           |         |
| Barrier Dist. 10 Observer.     10.0 feet     Autos:     0.000       Barrier Distance to Observer.     10.0 feet     Medium Trucks:     2.297       Observer Height (Above Pad):     5.0 feet     Heavy Trucks:     8.006     Grade Adjustment:     0.0       Pad Elevation:     0.0 feet     Lane Equivalent Distance (in feet)     Lane Equivalent Distance (in feet)       Road Grade:     0.0%     Autos:     140.151       Road Grade:     0.0%     Autos:     140.151       Road Grade:     0.0%     Autos:     140.151       Kight View:     90.0 degrees     Medium Trucks:     140.157       FHWA Noise Model Calculations     Distance     Finite Road     Fresnel     Barrier Atten     Berm Atten       Autos:     66.51     4.68     -6.82     -1.20     -1.07     0.000     0.000       Medium Trucks:     77.72     -12.56     -6.82     -1.20     -1.35     0.000     0.000       Medium Trucks:     82.99     -16.52     -6.82     -1.20     -1.35     0.000     0.000       Medium Trucks:     63.2     61.3     59.5     53.4     62.1     62.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Contorline Dist   | to Observer:                  | 1/6 0 feet              |         | 1       | Noise So   | urce E  | levatio            | ns (in f | eet)        |           |         |
| Database Distance to Observer.     10.0 feet     Medium Trucks:     2.297       Observer Height (Above Pad):     5.0 feet     Heavy Trucks:     8.006     Grade Adjustment:     0.0       Pad Elevation:     0.0 feet     Lane Equivalent Distance (in feet)     Lane Equivalent Distance (in feet)       Road Grade:     0.0%     Autos:     140.214       Left View:     -90.0 degrees     Medium Trucks:     140.151       Right View:     90.0 degrees     Heavy Trucks:     140.157       FHWA Noise Model Calculations     Vehicle Type     REMEL     Traffic Flow     Distance     Finite Road     Fresnel     Barrier Atten     Berm Atten       Autos:     66.51     4.68     -6.82     -1.20     -1.07     0.000     0.000       Medium Trucks:     77.72     -12.56     -6.82     -1.20     -1.15     0.000     0.000       Medium Trucks:     82.99     -16.52     -6.82     -1.20     -1.35     0.000     0.000       Medium Trucks:     63.2     61.3     59.5     53.4     62.1     62.7       Medium Trucks:     57.1     55.6     49.3     47.7     56.2 <t< td=""><td>Barriar Distance</td><td>to Observer:</td><td>10.0 feet</td><td></td><td></td><td></td><td>Auto</td><td>s: 0</td><td>.000</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Barriar Distance  | to Observer:                  | 10.0 feet               |         |         |            | Auto    | s: 0               | .000     |             |           |         |
| Height (Above Pad).       S.0 feet       Heavy Trucks:       8.006       Grade Adjustment:       0.0         Pad Elevation:       0.0 feet       Image: Constraint of the participation of the part partitipation of the part partit in the part part participation | Observer Height   | (Above Ded):                  | F 0 foot                |         |         | Mediun     | n Truck | :s: 2              | .297     |             |           |         |
| Road Elevation:     0.0 feet       Road Grade:     0.0%       Autos:     140.214       Left View:     -90.0 degrees       Right View:     90.0 degrees       FHWA Noise Model Calculations     Heavy Trucks:     140.151       FHWA Noise Model Calculations     Distance     Finite Road     Fresnel     Barrier Atten     Berm Atten       Autos:     66.51     4.68     -6.82     -1.20     -1.07     0.000     0.0000       Medium Trucks:     77.72     -12.56     -6.82     -1.20     -1.15     0.000     0.000       Medium Trucks:     82.99     -16.52     -6.82     -1.20     -1.35     0.000     0.000       Unmitigated Noise Levels (without Topo and barrier attenuation)     Leq Evening     Leq Night     Ldn     CNEL       Autos:     63.2     61.3     59.5     53.4     62.1     62.7       Medium Trucks:     57.1     55.6     49.3     47.7     56.2     56.4       Medium Trucks:     58.5     57.0     48.0     49.3     57.6     57.7       Vehicle Noise:     65.2     63.4     60.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Observer Height   | (ADOVE Pau).<br>ad Elovation: | 5.0 leet                |         |         | Heav       | y Truck | :s: 8              | .006     | Grade Ad    | justment. | : 0.0   |
| Road Credel     0.0 feet     Autos:     140.214       Road Grade:     0.0%     Autos:     140.151       Left View:     90.0 degrees     Medium Trucks:     140.151       FHWA Noise Model Calculations     Distance     Finite Road     Fresnel     Barrier Atten     Bern Atten       VehicleType     REMEL     Traffic Flow     Distance     Finite Road     Fresnel     Barrier Atten     Bern Atten       Autos:     66.51     4.68     -6.82     -1.20     -1.07     0.000     0.000       Medium Trucks:     77.72     -12.56     -6.82     -1.20     -1.15     0.000     0.000       Medium Trucks:     82.99     -16.52     -6.82     -1.20     -1.35     0.000     0.000       Unmitigated Noise Levels (without Topo and barrier attenuation)     Leq Poak Hour     Leq Day     Leq Evening     Leq Night     Ldn     CNEL       Autos:     63.2     61.3     59.5     53.4     62.1     62.7       Medium Trucks:     57.1     55.6     49.3     47.7     56.2     56.4       Medium Trucks:     58.5     57.0     48.0     49.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Po                | ad Elevation:                 | 0.0 feet                |         |         | Lane Equ   | ıivalen | t Dista            | nce (in  | feet)       |           |         |
| Left View:     -90.0 degrees     Medium Trucks:     140.151       Right View:     90.0 degrees     Medium Trucks:     140.151       FHWA Noise Model Calculations     Distance     Finite Road     Fresnel     Barrier Atten     Berm Atten       Autos:     66.51     4.68     -6.82     -1.20     -1.07     0.000     0.000       Medium Trucks:     77.72     -12.56     -6.82     -1.20     -1.15     0.000     0.000       Medium Trucks:     77.72     -12.56     -6.82     -1.20     -1.15     0.000     0.000       Medium Trucks:     82.99     -16.52     -6.82     -1.20     -1.15     0.000     0.000       Unmitigated Noise Levels (without Topo and barrier attenuation)     Leq Night     Ldn     CNEL       Vehicle Type     Leq Peak Hour     Leq Day     Leq Evening     Leq Night     Ldn     CNEL       Medium Trucks:     57.1     55.6     49.3     47.7     56.2     56.4       Medium Trucks:     58.5     57.0     48.0     49.3     57.6     57.7       Vehicle Noise:     65.2     63.4     60.2     55.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | au Lievalion.<br>Road Grade:  |                         |         |         |            | Auto    | s <sup>.</sup> 140 | 214      |             |           |         |
| Right View:     90.0 degrees     Hourann Houre:     Hourann Houre:     Hourann Houre:       FHWA Noise Model Calculations     Finite Flow     Distance     Finite Road     Fresnel     Barrier Atten     Berm Atten       Autos:     66.51     4.68     -6.82     -1.20     -1.07     0.000     0.000       Medium Trucks:     77.72     -12.56     -6.82     -1.20     -1.15     0.000     0.000       Medium Trucks:     77.72     -12.56     -6.82     -1.20     -1.15     0.000     0.000       Medium Trucks:     82.99     -16.52     -6.82     -1.20     -1.35     0.000     0.000       Unmitigated Noise Levels (without Topo and barrier attenuation)     Leq Evening     Leq Night     Ldn     CNEL       Autos:     63.2     61.3     59.5     53.4     62.1     62.7       Medium Trucks:     57.1     55.6     49.3     47.7     56.2     56.4       Medium Trucks:     57.1     55.6     49.3     47.7     56.2     56.4       Medium Trucks:     58.5     57.0     48.0     49.3     57.6     57.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | Left View:                    | -0.0 /0<br>-00 0 degree |         |         | Mediur     | n Truck | 's' 140            | ) 151    |             |           |         |
| FHWA Noise Model Calculations       VehicleType     REMEL     Traffic Flow     Distance     Finite Road     Fresnel     Barrier Atten     Berm Atten       Autos:     66.51     4.68     -6.82     -1.20     -1.07     0.000     0.000       Medium Trucks:     77.72     -12.56     -6.82     -1.20     -1.15     0.000     0.000       Heavy Trucks:     82.99     -16.52     -6.82     -1.20     -1.35     0.000     0.000       Unmitigated Noise Levels (without Topo and barrier attenuation)     Leq Evening     Leq Night     Ldn     CNEL       Autos:     63.2     61.3     59.5     53.4     62.1     62.7       Medium Trucks:     57.1     55.6     49.3     47.7     56.2     56.4       Heavy Trucks:     58.5     57.0     48.0     49.3     57.6     57.7       Vehicle Noise:     65.2     63.4     60.2     55.6     64.2     64.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | Right View:                   |                         | 50      |         | Heav       | v Truck | ο. 140<br>σ. 140   | 157      |             |           |         |
| FHWA Noise Model Calculations         VehicleType       REMEL       Traffic Flow       Distance       Finite Road       Fresnel       Barrier Atten       Berm Atten         Autos:       66.51       4.68       -6.82       -1.20       -1.07       0.000       0.000         Medium Trucks:       77.72       -12.56       -6.82       -1.20       -1.15       0.000       0.000         Heavy Trucks:       82.99       -16.52       -6.82       -1.20       -1.35       0.000       0.000         Unmitigated Noise Levels (without Topo and barrier attenuation)       VehicleType       Leq Peak Hour       Leq Day       Leq Evening       Leq Night       Ldn       CNEL         Autos:       63.2       61.3       59.5       53.4       62.1       62.7         Medium Trucks:       57.1       55.6       49.3       47.7       56.2       56.4         Heavy Trucks:       58.5       57.0       48.0       49.3       57.6       57.7         Vehicle Noise:       65.2       63.4       60.2       55.6       64.2       64.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | Nght view.                    | 30.0 degree             | 55      |         | nour.      | y maon  | 0. 140             |          |             |           |         |
| VehicleType       REMEL       Traffic Flow       Distance       Finite Road       Fresnel       Barrier Atten       Berm Atten         Autos:       66.51       4.68       -6.82       -1.20       -1.07       0.000       0.000         Medium Trucks:       77.72       -12.56       -6.82       -1.20       -1.15       0.000       0.000         Heavy Trucks:       82.99       -16.52       -6.82       -1.20       -1.35       0.000       0.000         Unmitigated Noise Levels (without Topo and barrier attenuation)       Leq Evening       Leq Night       Ldn       CNEL         Autos:       63.2       61.3       59.5       53.4       62.1       62.7         Medium Trucks:       57.1       55.6       49.3       47.7       56.2       56.4         Heavy Trucks:       58.5       57.0       48.0       49.3       57.6       57.7         Vehicle Noise:       65.2       63.4       60.2       55.6       64.2       64.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FHWA Noise Mod    | el Calculations               |                         |         | 1       |            |         |                    |          |             |           |         |
| Autos:     66.51     4.68     -6.82     -1.20     -1.07     0.000     0.000       Medium Trucks:     77.72     -12.56     -6.82     -1.20     -1.15     0.000     0.000       Heavy Trucks:     82.99     -16.52     -6.82     -1.20     -1.35     0.000     0.000       Unmitigated Noise Levels (without Topo and barrier attenuation)     Leq Day     Leq Evening     Leq Night     Ldn     CNEL       Autos:     63.2     61.3     59.5     53.4     62.1     62.7       Medium Trucks:     57.1     55.6     49.3     47.7     56.2     56.4       Heavy Trucks:     58.5     57.0     48.0     49.3     57.6     57.7       Vehicle Noise:     65.2     63.4     60.2     55.6     64.2     64.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VehicleType       | REMEL 7                       | raffic Flow             | Dista   | ance    | Finite     | Road    | Fres               | nel      | Barrier Att | en Ber    | m Atten |
| Medium Trucks:     77.72     -12.56     -6.82     -1.20     -1.15     0.000     0.000       Heavy Trucks:     82.99     -16.52     -6.82     -1.20     -1.35     0.000     0.000       Unmitigated Noise Levels (without Topo and barrier attenuation)     -1.20     -1.35     0.000     0.000       Vehicle Type     Leq Peak Hour     Leq Day     Leq Evening     Leq Night     Ldn     CNEL       Autos:     63.2     61.3     59.5     53.4     62.1     62.7       Medium Trucks:     57.1     55.6     49.3     47.7     56.2     56.4       Heavy Trucks:     58.5     57.0     48.0     49.3     57.6     57.7       Vehicle Noise:     65.2     63.4     60.2     55.6     64.2     64.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Autos:            | 66.51                         | 4.68                    |         | -6.82   | 2          | -1.20   |                    | -1.07    | 0.0         | 000       | 0.000   |
| Heavy Trucks:     82.99     -16.52     -6.82     -1.20     -1.35     0.000     0.000       Unmitigated Noise Levels (without Topo and barrier attenuation)     Vehicle Type     Leq Peak Hour     Leq Day     Leq Evening     Leq Night     Ldn     CNEL       Autos:     63.2     61.3     59.5     53.4     62.1     62.7       Medium Trucks:     57.1     55.6     49.3     47.7     56.2     56.4       Heavy Trucks:     58.5     57.0     48.0     49.3     57.6     57.7       Vehicle Noise:     65.2     63.4     60.2     55.6     64.2     64.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Medium Trucks:    | 77.72                         | -12.56                  |         | -6.82   | 2          | -1.20   |                    | -1.15    | 0.0         | 000       | 0.000   |
| Unmitigated Noise Levels (without Topo and barrier attenuation)         VehicleType       Leq Peak Hour       Leq Day       Leq Evening       Leq Night       Ldn       CNEL         Autos:       63.2       61.3       59.5       53.4       62.1       62.7         Medium Trucks:       57.1       55.6       49.3       47.7       56.2       56.4         Heavy Trucks:       58.5       57.0       48.0       49.3       57.6       57.7         Vehicle Noise:       65.2       63.4       60.2       55.6       64.2       64.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Heavy Trucks:     | 82.99                         | -16.52                  |         | -6.82   | 2          | -1.20   |                    | -1.35    | 0.0         | 000       | 0.000   |
| VehicleType       Leq Peak Hour       Leq Day       Leq Evening       Leq Night       Ldn       CNEL         Autos:       63.2       61.3       59.5       53.4       62.1       62.7         Medium Trucks:       57.1       55.6       49.3       47.7       56.2       56.4         Heavy Trucks:       58.5       57.0       48.0       49.3       57.6       57.7         Vehicle Noise:       65.2       63.4       60.2       55.6       64.2       64.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unmitigated Nois  | e Levels (withou              | It Topo and             | barriei | r atten | uation)    |         |                    |          |             |           |         |
| Autos:     63.2     61.3     59.5     53.4     62.1     62.7       Medium Trucks:     57.1     55.6     49.3     47.7     56.2     56.4       Heavy Trucks:     58.5     57.0     48.0     49.3     57.6     57.7       Vehicle Noise:     65.2     63.4     60.2     55.6     64.2     64.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VehicleType       | Leg Peak Hour                 | Leq Day                 | ,       | Leg E   | vening     | Leq     | Night              |          | Ldn         | Cl        | NEL     |
| Medium Trucks:       57.1       55.6       49.3       47.7       56.2       56.4         Heavy Trucks:       58.5       57.0       48.0       49.3       57.6       57.7         Vehicle Noise:       65.2       63.4       60.2       55.6       64.2       64.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Autos:            | . 63.2                        |                         | 61.3    |         | 59.5       |         | 53                 | .4       | 62.1        |           | 62.7    |
| Heavy Trucks:       58.5       57.0       48.0       49.3       57.6       57.7         Vehicle Noise:       65.2       63.4       60.2       55.6       64.2       64.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Medium Trucks:    | 57.1                          | į                       | 55.6    |         | 49.3       |         | 47                 | 7        | 56.2        | 2         | 56.4    |
| Vehicle Noise:       65.2       63.4       60.2       55.6       64.2       64.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Heavy Trucks:     | 58.5                          | ł                       | 57.0    |         | 48.0       |         | 49                 | .3       | 57.6        | 6         | 57.7    |
| Or a contract to Distance to Nation Or and the fact (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Vehicle Noise:    | 65.2                          |                         | 63.4    |         | 60.2       |         | 55                 | .6       | 64.2        | 2         | 64.6    |
| Centerline Distance to Noise Contour (in feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Centerline Distan | ce to Noise Con               | tour (in feet)          | )       |         |            |         |                    |          |             |           |         |
| 70 dBA 65 dBA 60 dBA 55 dBA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                               |                         |         | 70 c    | dBA        | 65      | dBA                | ť        | 60 dBA      | 55        | dBA     |
| Ldn: 60 128 276 595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                               |                         | Ldn:    | 6       | 0          | 128     |                    |          | 276         | 5         | 95      |
| CNEL: 64 137 296 637                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                               | CI                      | IEL:    | 6       | 4          | 1       | 37                 |          | 296         | 6         | 37      |

Scenario: Future Without Project Road Name: Lincoln Bl. Road Segment: s/o Maxella Av.

| SITE SPECIFIC INPUT DATA       NOISE MODEL INPUTS         Highway Data       Site Conditions (Hard = 10, Soft = 15)         Average Daily Traffic (Adt): 46,900 vehicles       Autos:       15         Peak Hour Volume:       4,690 vehicles       Autos:       15         Peak Hour Volume:       4,690 vehicles       Autos:       15         Vehicle Speed:       40 mph       Heavy Trucks (2 Axles):       15         Vehicle Speed:       40 mph       Near/Far Lane Distance:       82 feet       Vehicle Trucks: (3 + Axles):       15         Site Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                                |                |            |             |          |           |             |              |           |         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------|----------------|------------|-------------|----------|-----------|-------------|--------------|-----------|---------|
| Highway Data       Site Conditions (Hard = 10, Soft = 15)         Average Daily Traffic (Adt): 46,900 vehicles<br>Peak Hour Volume: 4,690 vehicles<br>Vehicle Speed: 40 mph<br>Near/Far Lane Distance: 82 feet       Autos: 15<br>Heavy Trucks (24 Axles): 15<br>Heavy Trucks (34 Axles): 15         Site Data       Vehicle Type       Day       Evening       Night       Dail         Site Data       Vehicle Type       Day       Evening       Night       Dail         Barrier Height:<br>Centerline Dist. to Observer: 10.0 feet       Autos: 0.000       Heavy Trucks: 84.8%       4.9%       10.3%       1.8         Barrier Distance to Observer: 10.0 feet       Moise Source Elevations (in feet)       Autos: 140.0151       Heavy Trucks: 8.006       Grade Adjustment: 0.0         Bartier Distance to Observer: 90.0 degrees       Pad Elevation: 0.0 feet       Autos: 140.151       Heavy Trucks: 8.006       Grade Adjustment: 0.0         Right View: 90.0 degrees       Pad Elevation: 0.0 feet       Autos: 140.151       Heavy Trucks: 140.151         Heavy Trucks: 140.157       FHWA Noise Model Calculations       Site Conduitions       Heavy Trucks: 140.151         VehicleType       REMEL       Traffic Flow       Distance       Finite Road       Fresnel       Barrier Atten       Bern Attu         Medium Trucks:       Sis 2.99                                                                                                                                                                                                                                                                                                                               | SITE              | SPECIFIC INP                   | UT DATA        |            |             | 1        | NOISE     | MODE        |              | S         |         |
| Average Daily Traffic (Adt): 46,900 vehicles       Autos: 15         Peak Hour Vercentage:       10%       Medium Trucks (2 Axles):       15         Peak Hour Volume:       4,690 vehicles       Medium Trucks (2 Axles):       15         Vehicle Speed:       40 mph       Vehicle Mix       Vehicle Mix         Near/Far Lane Distance:       82 feet       Vehicle/ Mix       Vehicle/ Mix         Site Data       Autos:       77.5%       12.9%       9.6%       97.4         Barrier Type (0-Wall, 1-Berm):       0.0       feet       Medium Trucks:       84.8%       4.9%       10.3%       1.8         Barrier Distance to Observer:       136.0 feet       Medium Trucks:       86.5%       2.7%       10.8%       0.7         Observer Height (Above Pad):       5.0 feet       Medium Trucks:       2.000       Medium Trucks:       2.27%       10.8%       0.7         Road Elevation:       0.0 feet       Autos:       140.0151       Heavy Trucks:       80.06       Grade Adjustment:       0.0         WehicleType       REMEL       Traffic Flow       Distance       Finite Road       Fresnel       Barrier Atten       Berrier Atten       Medium Trucks:       140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Highway Data      |                                |                |            | Site Cor    | nditions | s (Hard = | = 10, Sc    | oft = 15)    |           |         |
| Peak Hour Percentage:       10%       Medium Trucks (2 Axles):       15         Peak Hour Volume:       4,690 vehicles       Vehicle Speed:       40 mph         Near/Far Lane Distance:       82 feet       Vehicle Mix       Vehicle Mix         Site Data       Vehicle Speed:       40 mph       Vehicle Mix       Vehicle Mix         Barrier Height:       0.0 feet       Medium Trucks:       84.8%       4.9%       9.6%       97.4         Barrier Type (0-Wall, 1-Berm):       0.0       Centerline Dist. to Barrier:       136.0 feet       Medium Trucks:       84.8%       4.9%       10.3%       1.8         Barrier Type (0-Wall, 1-Berm):       0.0       Centerline Dist. to Dserver:       140.0 feet       Medium Trucks:       84.8%       4.9%       0.3%       0.7         Centerline Dist. to Observer:       10.0 feet       Autos:       0.00       Medium Trucks:       8.65%       2.7%       10.8%       0.0         Road Grade:       0.0%       Left View:       -90.0 degrees       Heavy Trucks:       140.214       Medium Trucks:       140.214         Medium Trucks:       77.72       -11.97       -6.82       -1.20       -1.07       0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Average Daily     | Traffic (Adt): 46              | ,900 vehicles  |            |             |          |           | Autos:      | 15           |           |         |
| Peak Hour Volume:       4,690 vehicles<br>Vehicle Speed:       Heavy Trucks (3+ Axles):       15         Near/Far Lane Distance:       82 feet       Vehicle Mix       Vehicle Mix         Site Data       Autos:       77.5%       12.9%       9.6%       97.4         Barrier Height:       0.0 feet       Autos:       77.5%       12.9%       9.6%       97.4         Barrier Type (0-Wall, 1-Berm):       0.0       Centerline Dist. to Barrier:       136.0 feet       Medium Trucks:       84.8%       4.9%       10.3%       1.8         Barrier Distance to Observer:       10.0 feet       Medium Trucks:       2.297       Noise Source Elevations (in feet)       Autos:       0.000         Road Elevation:       0.0 feet       Autos:       140.214       Medium Trucks:       140.214         Road Grade:       0.0%       Autos:       140.151       Heavy Trucks:       140.151         VehicleType       ReMEL       Traffic Flow       Distance       Finite Road       Fresnel       Barrier Atten       Berm Atten         Medium Trucks:       77.72       -11.97       -6.82       -1.20       -1.17       0.000       0.01         Heavy Trucks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Peak Hour         | Percentage:                    | 10%            |            | Me          | edium Tr | rucks (2  | Axles):     | 15           |           |         |
| Vehicle Speed:       40 mph<br>82 feet       Vehicle Mix         Site Data       Vehicle Type       Day       Evening       Night       Dai         Site Data       Autos:       77.5%       12.9%       9.6%       97.4         Barrier Height:       0.0       Feed       Medium Trucks:       84.8%       4.9%       10.3%       1.8         Barrier Type (0-Wall, 1-Berm):       0.0       Heavy Trucks:       86.5%       2.7%       10.8%       0.7         Centerline Dist. to Dserver:       10.0 feet       Medium Trucks:       86.5%       2.7%       10.8%       0.7         Observer Height (Above Pad):       5.0 feet       Autos:       0.000       Medium Trucks:       2.297         Observer Height (Above Pad):       5.0 feet       Autos:       140.151       Heavy Trucks:       8.006       Grade Adjustment:       0.0         Road Elevation:       0.0 feet       Autos:       140.151       Heavy Trucks:       140.151         Heavy Trucks:       66.51       5.27       -6.82       -1.20       -1.07       0.000       0.01         Medium Trucks:       82.99       -15.92       -6.82       -1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Peak F            | lour Volume: 4                 | ,690 vehicles  |            | He          | eavy Tru | ıcks (3+  | Axles):     | 15           |           |         |
| Near/Far Lane Distance:       82 feet       VehicleType       Day       Evening       Night       Dai         Site Data       Autos:       77.5%       12.9%       9.6%       97.4         Barrier Height:       0.0 feet       Autos:       77.5%       12.9%       9.6%       97.4         Barrier Type (0-Wall, 1-Berm):       0.0       Medium Trucks:       84.8%       4.9%       10.3%       1.8         Barrier Dist. to Barrier:       136.0 feet       Medium Trucks:       86.5%       2.7%       10.8%       0.7         Centerline Dist. to Observer:       10.0 feet       Autos:       0.000       Medium Trucks:       8.06       Grade Adjustment:       0.0         Barrier Distance to Observer:       10.0 feet       Autos:       0.000       Medium Trucks:       2.297         Observer Height (Above Pad):       5.0 feet       Lare Equivalent Distance (in feet)       Autos:       0.00         Road Grade:       0.0%       Left View:       90.0 degrees       Finite Road       Fresnel       Barrier Atten       Bern Atten         Autos:       66.51       5.27       -6.82       -1.20       -1.15       0.000       0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ve                | hicle Speed:                   | 40 mph         |            | Vehicle     | Mix      |           |             |              |           |         |
| Site Data       Autos:       77.5%       12.9%       9.6%       97.4         Barrier Type (0-Wall, 1-Berm):       0.0       Medium Trucks:       84.8%       4.9%       10.3%       1.8         Barrier Type (0-Wall, 1-Berm):       0.0       Noise Source Elevations:       84.8%       4.9%       10.3%       1.8         Centerline Dist. to Dbserver:       136.0 feet       Noise Source Elevations (in feet)       Noise Source Elevations (in feet)       0.0         Observer Height (Above Pad):       5.0 feet       Autos:       0.000       Medium Trucks:       2.297         Observer Height (Above Pad):       5.0 feet       Autos:       0.000       Medium Trucks:       2.297         Pad Elevation:       0.0 feet       Road Grade:       0.0%       Autos:       140.214         Road Grade:       0.0%       Autos:       140.214       Medium Trucks:       140.151         Heavy Trucks:       66.51       5.27       -6.82       -1.20       -1.07       0.000       0.0         Medium Trucks:       77.72       -11.97       -6.82       -1.20       -1.35       0.000       0.0         Heavy Trucks:       82.99       -15.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Near/Far La       | ne Distance:                   | 82 feet        |            | Vel         | nicleTvp | e         | Dav         | Evenina      | Niaht     | Dailv   |
| Barrier Height:       0.0 feet         Barrier Type (0-Wall, 1-Berm):       0.0         Centerline Dist. to Barrier:       136.0 feet         Centerline Dist. to Observer:       146.0 feet         Barrier Distance to Observer:       146.0 feet         Observer Height (Above Pad):       5.0 feet         Pad Elevation:       0.0 feet         Road Grade:       0.0%         Left View:       -90.0 degrees         Right View:       90.0 degrees         Right View:       90.0 degrees         FHWA Noise Model Calculations       Distance         Vehicle Type       REMEL       Traffic Flow         Distance       Finite Road       Fresnel         Barrier Atten       Bernier Atten         Autos:       66.51       5.27         Vehicle Type       REMEL       Traffic Flow         Distance       Finite Road       Fresnel         Barrier Atten       Bernier Atten         Autos:       66.51       5.27         -6.82       -1.20       -1.07         Medium Trucks:       82.99       -15.92         Autos:       63.8       61.9 <td< td=""><td>Site Data</td><td></td><td></td><td></td><td></td><td></td><td>Autos:</td><td>77.5%</td><td>12.9%</td><td>9.6%</td><td>97.42%</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Site Data         |                                |                |            |             |          | Autos:    | 77.5%       | 12.9%        | 9.6%      | 97.42%  |
| Darket       Darket       Darket       Heavy Trucks:       86.5%       2.7%       10.8%       0.7         Barrier Type (0-Wall, 1-Berm):       0.0       Centerline Dist. to Barrier:       136.0 feet       Noise Source Elevations (in feet)       Noise Source Elevations (in feet)         Barrier Distance to Observer:       10.0 feet       Autos:       0.000       Medium Trucks:       2.297         Observer Height (Above Pad):       5.0 feet       Heavy Trucks:       8.006       Grade Adjustment:       0.0         Road Elevation:       0.0 feet       Lane Equivalent Distance (in feet)       Image: Comparison of the comparis | Ba                | rrier Height:                  | 0.0 feet       |            | M           | ledium T | rucks:    | 84.8%       | 4.9%         | 10.3%     | 1.84%   |
| Centerline Dist. to Barrier:     136.0 feet       Centerline Dist. to Observer:     146.0 feet       Barrier Distance to Observer:     10.0 feet       Observer Height (Above Pad):     5.0 feet       Pad Elevation:     0.0 feet       Road Grade:     0.0%       Autos:     140.05       Genterline Dist. to Observer:     10.0 feet       Road Elevation:     0.0 feet       Road Grade:     0.0%       Autos:     140.151       Heavy Trucks:     140.151       FHWA Noise Model Calculations     Distance     Finite Road     Fresnel     Barrier Atten     Berm Atten       VehicleType     REMEL     Traffic Flow     Distance     Finite Road     Fresnel     Barrier Atten     Berm Atten       Medium Trucks:     77.72     -11.97     -6.82     -1.20     -1.07     0.000     0.0       Heavy Trucks:     82.99     -15.92     -6.82     -1.20     -1.15     0.000     0.0       Heavy Trucks:     57.7     56.2     49.9     48.3     56.8     55       Medium Trucks:     57.7     56.2     49.9     48.3     56.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Barrier Type (0-W | /all_1-Berm) <sup>.</sup>      | 0.0            |            |             | Heavy T  | rucks:    | 86.5%       | 2.7%         | 10.8%     | 0.74%   |
| Noise Source Elevations (in feet)Centerline Dist to Observer: 146.0 feetBarrier Distance to Observer:10.0 feetObserver Height (Above Pad):5.0 feetPad Elevation:0.0 feetRoad Grade:0.0%Road Grade:0.0%Road Grade:0.0%Right View:90.0 degreesRight View:90.0 degreesPeriod Colspan="2">FHWA Noise Model CalculationsVehicleTypeREMELTraffic FlowDistanceFinite RoadFresnelBarrier AttenBerrier AttenBerrier AttenAutos:66.515.27-6.82-1.20-1.15Outo:0.00Medium Trucks:77.72-11.97-6.82-1.20-1.15Outo:0.00Medium Trucks:63.861.960.153.861.960.154.062.263.863.861.960.154.063.861.964.060.855.2Centerline Distance to Noise Contour (in feet)70 dBA65 dBA6514070 dBA6514070 dBA70 dBA<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Centerline Di     | ist. to Barrier:               | 136.0 feet     |            |             |          |           | <i>// •</i> |              |           |         |
| Barrier Distance to Observer:     10.0 feet     Autos:     0.000       Barrier Distance to Observer:     10.0 feet     Medium Trucks:     2.297       Observer Height (Above Pad):     5.0 feet     Heavy Trucks:     8.006     Grade Adjustment:     0.0       Pad Elevation:     0.0 feet     Lane Equivalent Distance (in feet)     Lane Equivalent Distance (in feet)       Road Grade:     0.0%     Autos:     140.151     Heavy Trucks:     140.151       Right View:     90.0 degrees     Heavy Trucks:     140.151     Heavy Trucks:     140.157       FHWA Noise Model Calculations     VehicleType     REMEL     Traffic Flow     Distance     Finite Road     Fresnel     Barrier Atten     Bern Atten       Autos:     66.51     5.27     -6.82     -1.20     -1.07     0.000     0.0       Medium Trucks:     77.72     -11.97     -6.82     -1.20     -1.35     0.000     0.0       Heavy Trucks:     82.99     -15.92     -6.82     -1.20     -1.35     0.000     0.0       Medium Trucks:     57.7     56.2     49.9     48.3     56.8     55       Medium Trucks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Centerline Dist   | to Observer:                   | 146.0 feet     |            | Noise S     | ource E  | evation   | is (in fe   | eet)         |           |         |
| Dame Distance is Distance     Medium Trucks:     2.297       Observer Height (Above Pad):     5.0 feet     Heavy Trucks:     8.006     Grade Adjustment:     0.0       Pad Elevation:     0.0 feet     Lane Equivalent Distance (in feet)     Lane Equivalent Distance (in feet)       Road Grade:     0.0%     Autos:     140.151     Heavy Trucks:     140.151       Right View:     90.0 degrees     Heavy Trucks:     140.151     Heavy Trucks:     140.157       FHWA Noise Model Calculations     Vehicle Type     REMEL     Traffic Flow     Distance     Finite Road     Fresnel     Barrier Atten     Berrm Atten       Autos:     66.51     5.27     -6.82     -1.20     -1.07     0.000     0.0       Heavy Trucks:     82.99     -15.92     -6.82     -1.20     -1.15     0.000     0.0       Heavy Trucks:     82.99     -15.92     -6.82     -1.20     -1.35     0.000     0.0       Heavy Trucks:     82.99     -15.92     -6.82     -1.20     -1.35     0.000     0.0       Unmitigated Noise Levels (without Topo and barrier attenuation)     Leq Peak Hour     Leq Day     Leq Evening     Leq N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Barrier Distance  | to Observer:                   | 10.0 feet      |            |             | Auto     | os: 0     | .000        |              |           |         |
| Busine (notice rad).       0.0 feet       Heavy Trucks:       8.006       Grade Adjustment:       0.0         Pad Elevation:       0.0 feet       Lane Equivalent Distance (in feet)       Lane Equivalent Distance (in feet)         Road Grade:       0.0%       Autos:       140.214       Medium Trucks:       140.151         Right View:       90.0 degrees       Finite Road       Fresnel       Barrier Atten       Berm Atten         Vehicle Type       REMEL       Traffic Flow       Distance       Finite Road       Fresnel       Barrier Atten       Berm Atten         Autos:       66.51       5.27       -6.82       -1.20       -1.07       0.000       0.0         Medium Trucks:       77.72       -11.97       -6.82       -1.20       -1.15       0.000       0.0         Heavy Trucks:       82.99       -15.92       -6.82       -1.20       -1.35       0.000       0.0         Unmitigated Noise Levels (without Topo and barrier attenuation)       Leq Point       Leq Page       Leq Day       Leq Evening       Leq Night       Ldn       CNEL         Medium Trucks:       57.7       56.2       49.9       48.3       56.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Observer Height   | (Ahove Pad):                   | 5.0 feet       |            | Mediu       | m Truck  | ks: 2     | .297        | _            |           |         |
| Road Elevation:     0.0 feet     Lane Equivalent Distance (in feet)       Road Grade:     0.0%     Autos:     140.214       Left View:     -90.0 degrees     Medium Trucks:     140.151       Right View:     90.0 degrees     Medium Trucks:     140.157       FHWA Noise Model Calculations     Distance     Finite Road     Fresnel     Barrier Atten     Berm Atten       Vehicle Type     REMEL     Traffic Flow     Distance     -1.07     0.000     0.0       Medium Trucks:     77.72     -11.97     -6.82     -1.20     -1.15     0.000     0.0       Medium Trucks:     82.99     -15.92     -6.82     -1.20     -1.35     0.000     0.0       Heavy Trucks:     82.99     -15.92     -6.82     -1.20     -1.35     0.000     0.0       Unmitigated Noise Levels (without Topo and barrier attenuation)     Vehicle Type     Leq Paak Hour     Leq Day     Leq Evening     Leq Night     Ldn     CNEL       Autos:     63.8     61.9     60.1     54.0     62.7     6       Medium Trucks:     57.7     56.2     49.9     48.3     56.8     5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Diserver neight   | (ADUVE Fau).<br>ad Elevation:  |                |            | Hea         | vy Truck | ks: 8     | .006        | Grade Adj    | iustment: | 0.0     |
| Road Grade:     0.0%     Autos:     14.0.214       Road Grade:     0.0%     Autos:     140.214       Left View:     90.0 degrees     Heavy Trucks:     140.151       FHWA Noise Model Calculations     Heavy Trucks:     140.157       FHWA Noise Model Calculations     Finite Flow     Distance     Finite Road     Fresnel     Barrier Atten     Berm Atten       Vehicle Type     REMEL     Traffic Flow     Distance     Finite Road     Fresnel     Barrier Atten     Berm Atten       Medium Trucks:     77.72     -11.97     -6.82     -1.20     -1.15     0.000     0.0       Medium Trucks:     82.99     -15.92     -6.82     -1.20     -1.35     0.000     0.0       Medium Trucks:     82.99     -15.92     -6.82     -1.20     -1.35     0.000     0.0       Unmitigated Noise Levels (without Topo and barrier attenuation)     Leq Night     Ldn     CNEL       Medium Trucks:     57.7     56.2     49.9     48.3     56.8     5       Heavy Trucks:     59.1     57.6     48.6     49.8     58.2     5       Vehicle Noise: <t< td=""><td>Ro</td><td>ad Elevation:<br/>ad Elevation:</td><td>0.0 feet</td><td></td><td>Lane Ec</td><td>uivalen</td><td>t Distar</td><td>ice (in i</td><td>feet)</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ro                | ad Elevation:<br>ad Elevation: | 0.0 feet       |            | Lane Ec     | uivalen  | t Distar  | ice (in i   | feet)        |           |         |
| Left View:       -90.0 degrees       Medium Trucks:       140.151         Right View:       90.0 degrees       Heavy Trucks:       140.157         FHWA Noise Model Calculations       Distance       Finite Road       Fresnel       Barrier Atten       Berm Atten         VehicleType       REMEL       Traffic Flow       Distance       Finite Road       Fresnel       Barrier Atten       Berm Atten         Medium Trucks:       66.51       5.27       -6.82       -1.20       -1.07       0.000       0.0         Medium Trucks:       77.72       -11.97       -6.82       -1.20       -1.35       0.000       0.0         Heavy Trucks:       82.99       -15.92       -6.82       -1.20       -1.35       0.000       0.0         Unmitigated Noise Levels (without Topo and barrier attenuation)       VehicleType       Leq Peak Hour       Leq Day       Leq Evening       Leq Night       Ldn       CNEL         Autos:       63.8       61.9       60.1       54.0       62.7       6         Medium Trucks:       57.7       56.2       49.9       48.3       56.8       5         Heavy Trucks:       59.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100               | Road Grade:                    | 0.0%           |            |             | Auto     | os: 140   | .214        |              |           |         |
| Right View:       90.0 degrees       Heavy Trucks:       140.157         FHWA Noise Model Calculations       VehicleType       REMEL       Traffic Flow       Distance       Finite Road       Fresnel       Barrier Atten       Berm Atten         Autos:       66.51       5.27       -6.82       -1.20       -1.07       0.000       0.0         Medium Trucks:       77.72       -11.97       -6.82       -1.20       -1.15       0.000       0.0         Heavy Trucks:       82.99       -15.92       -6.82       -1.20       -1.35       0.000       0.0         Unmitigated Noise Levels (without Topo and barrier attenuation)       VehicleType       Leq Peak Hour       Leq Day       Leq Evening       Leq Night       Ldn       CNEL         Autos:       63.8       61.9       60.1       54.0       62.7       6         Medium Trucks:       57.7       56.2       49.9       48.3       56.8       5         Heavy Trucks:       59.1       57.6       48.6       49.8       58.2       5         Vehicle Noise:       65.8       64.0       60.8       56.2       64.7       6 <t< td=""><td></td><td>Left View:</td><td>-90.0 degree</td><td>s</td><td>Mediu</td><td>m Truck</td><td>ks: 140</td><td>.151</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | Left View:                     | -90.0 degree   | s          | Mediu       | m Truck  | ks: 140   | .151        |              |           |         |
| FHWA Noise Model Calculations         VehicleType       REMEL       Traffic Flow       Distance       Finite Road       Fresnel       Barrier Atten       Berm Atten         Autos:       66.51       5.27       -6.82       -1.20       -1.07       0.000       0.1         Medium Trucks:       77.72       -11.97       -6.82       -1.20       -1.15       0.000       0.1         Heavy Trucks:       82.99       -15.92       -6.82       -1.20       -1.35       0.000       0.1         Unmitigated Noise Levels (without Topo and barrier attenuation)       VehicleType       Leq Peak Hour       Leq Day       Leq Evening       Leq Night       Ldn       CNEL         Autos:       63.8       61.9       60.1       54.0       62.7       6         Medium Trucks:       57.7       56.2       49.9       48.3       56.8       5         Heavy Trucks:       59.1       57.6       48.6       49.8       58.2       5         Vehicle Noise:       65.8       64.0       60.8       56.2       64.7       6         Centerline Distance to Noise Contour (in feet)       70 dBA       65 dBA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | Right View:                    | 90.0 degree    | s          | Hea         | vv Truck | ks: 140   | .157        |              |           |         |
| FHWA Noise Model CalculationsVehicleTypeREMELTraffic FlowDistanceFinite RoadFresnelBarrier AttenBerm AttenAutos: $66.51$ $5.27$ $-6.82$ $-1.20$ $-1.07$ $0.000$ $0.01$ Medium Trucks: $77.72$ $-11.97$ $-6.82$ $-1.20$ $-1.15$ $0.000$ $0.01$ Heavy Trucks: $82.99$ $-15.92$ $-6.82$ $-1.20$ $-1.35$ $0.000$ $0.01$ Unmitigated Noise Levels (without Topo and barrier attenuation)VehicleTypeLeq Peak HourLeq DayLeq EveningLeq NightLdnCNELAutos: $63.8$ $61.9$ $60.1$ $54.0$ $62.7$ $66.8$ Autos: $57.7$ $56.2$ $49.9$ $48.3$ $56.8$ $55.2$ Vehicle Noise: $59.1$ $57.6$ $48.6$ $49.8$ $58.2$ $55.2$ Vehicle Noise: $65.8$ $64.0$ $60.8$ $56.2$ $64.7$ $66.8$ Centerline Distance to Noise Contour (in feet)70 dBA $65 dBA$ $60 dBA$ $55 dBA$ Ldn: $65$ $140$ $303$ $652$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | - igni i igni                  | 0010 aug.00    | •          |             | ,        | -         | -           |              |           |         |
| VehicleType       REMEL       Traffic Flow       Distance       Finite Road       Fresnel       Barrier Atten       Berm Atten         Autos:       66.51       5.27       -6.82       -1.20       -1.07       0.000       0.0         Medium Trucks:       77.72       -11.97       -6.82       -1.20       -1.15       0.000       0.0         Heavy Trucks:       82.99       -15.92       -6.82       -1.20       -1.35       0.000       0.0         Unmitigated Noise Levels (without Topo and barrier attenuation)       Leq Peak Hour       Leq Day       Leq Evening       Leq Night       Ldn       CNEL         Autos:       63.8       61.9       60.1       54.0       62.7       6         Medium Trucks:       57.7       56.2       49.9       48.3       56.8       5         Heavy Trucks:       59.1       57.6       48.6       49.8       58.2       5         Vehicle Noise:       65.8       64.0       60.8       56.2       64.7       6         Centerline Distance to Noise Contour (in feet)       70 dBA       65 dBA       60 dBA       55 dBA         Ldn:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FHWA Noise Mod    | el Calculations                |                |            |             |          |           |             |              |           |         |
| Autos:     66.51     5.27     -6.82     -1.20     -1.07     0.000     0.0       Medium Trucks:     77.72     -11.97     -6.82     -1.20     -1.15     0.000     0.0       Heavy Trucks:     82.99     -15.92     -6.82     -1.20     -1.35     0.000     0.0       Unmitigated Noise Levels (without Topo and barrier attenuation)     -1.35     0.000     0.0       VehicleType     Leq Peak Hour     Leq Day     Leq Evening     Leq Night     Ldn     CNEL       Autos:     63.8     61.9     60.1     54.0     62.7     6       Medium Trucks:     57.7     56.2     49.9     48.3     56.8     5       Heavy Trucks:     59.1     57.6     48.6     49.8     58.2     5       Vehicle Noise:     65.8     64.0     60.8     56.2     64.7     6       Centerline Distance to Noise Contour (in feet)     70 dBA     65 dBA     60 dBA     55 dBA       Ldn:     65     140     303     652       ONEL     70     70     70     70     70     70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VehicleType       | REMEL 7                        | Traffic Flow   | Distanc    | ce Finite   | Road     | Fres      | nel         | Barrier Atte | en Ber    | m Atten |
| Medium Trucks:     77.72     -11.97     -6.82     -1.20     -1.15     0.000     0.0       Heavy Trucks:     82.99     -15.92     -6.82     -1.20     -1.35     0.000     0.0       Unmitigated Noise Levels (without Topo and barrier attenuation)     -1.20     -1.35     0.000     0.0       Vehicle Type     Leq Peak Hour     Leq Day     Leq Evening     Leq Night     Ldn     CNEL       Autos:     63.8     61.9     60.1     54.0     62.7     6       Medium Trucks:     57.7     56.2     49.9     48.3     56.8     5       Heavy Trucks:     59.1     57.6     48.6     49.8     58.2     5       Vehicle Noise:     65.8     64.0     60.8     56.2     64.7     6       Centerline Distance to Noise Contour (in feet)     70 dBA     65 dBA     60 dBA     55 dBA       Ldn:     65     140     303     652       ONEL     70 dBA     65     90 dBA     50 dBA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Autos:            | 66.51                          | 5.27           | -          | 6.82        | -1.20    |           | -1.07       | 0.0          | 000       | 0.000   |
| Heavy Trucks:     82.99     -15.92     -6.82     -1.20     -1.35     0.000     0.1       Unmitigated Noise Levels (without Topo and barrier attenuation)     Leq Day     Leq Evening     Leq Night     Ldn     CNEL       Autos:     63.8     61.9     60.1     54.0     62.7     6       Medium Trucks:     57.7     56.2     49.9     48.3     56.8     5       Heavy Trucks:     59.1     57.6     48.6     49.8     58.2     5       Vehicle Noise:     65.8     64.0     60.8     56.2     64.7     6       Centerline Distance to Noise Contour (in feet)     70 dBA     65 dBA     60 dBA     55 dBA       Ldn:     65     140     303     652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Medium Trucks:    | 77.72                          | -11.97         | -          | 6.82        | -1.20    |           | -1.15       | 0.0          | 000       | 0.000   |
| Unmitigated Noise Levels (without Topo and barrier attenuation)         VehicleType       Leq Peak Hour       Leq Day       Leq Evening       Leq Night       Ldn       CNEL         Autos:       63.8       61.9       60.1       54.0       62.7       66         Medium Trucks:       57.7       56.2       49.9       48.3       56.8       55         Heavy Trucks:       59.1       57.6       48.6       49.8       58.2       55         Vehicle Noise:       65.8       64.0       60.8       56.2       64.7       66         Centerline Distance to Noise Contour (in feet)       70 dBA       65 dBA       60 dBA       55 dBA         Ldn:       65       140       303       652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Heavy Trucks:     | 82.99                          | -15.92         | -          | 6.82        | -1.20    |           | -1.35       | 0.0          | 000       | 0.000   |
| VehicleType       Leq Peak Hour       Leq Day       Leq Evening       Leq Night       Ldn       CNEL         Autos:       63.8       61.9       60.1       54.0       62.7       6         Medium Trucks:       57.7       56.2       49.9       48.3       56.8       5         Heavy Trucks:       59.1       57.6       48.6       49.8       58.2       5         Vehicle Noise:       65.8       64.0       60.8       56.2       64.7       6         Centerline Distance to Noise Contour (in feet)       70 dBA       65 dBA       60 dBA       55 dBA         Ldn:       65       140       303       652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Unmitigated Nois  | e Levels (withou               | it Topo and b  | barrier at | ttenuation) |          |           |             |              |           |         |
| Autos:     63.8     61.9     60.1     54.0     62.7     6       Medium Trucks:     57.7     56.2     49.9     48.3     56.8     5       Heavy Trucks:     59.1     57.6     48.6     49.8     58.2     5       Vehicle Noise:     65.8     64.0     60.8     56.2     64.7     6       Centerline Distance to Noise Contour (in feet)     70 dBA     65 dBA     60 dBA     55 dBA       Ldn:     65     140     303     652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VehicleType       | Leq Peak Hour                  | Leq Day        | Le         | q Evening   | Leq      | Night     |             | Ldn          | CI        | VEL     |
| Medium Trucks:     57.7     56.2     49.9     48.3     56.8     55       Heavy Trucks:     59.1     57.6     48.6     49.8     58.2     55       Vehicle Noise:     65.8     64.0     60.8     56.2     64.7     66       Centerline Distance to Noise Contour (in feet)     70 dBA     65 dBA     60 dBA     55 dBA       Ldn:     65     140     303     652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Autos:            | 63.8                           | 6              | 51.9       | 60.1        | 1        | 54.       | 0           | 62.7         | ,         | 63.3    |
| Heavy Trucks:       59.1       57.6       48.6       49.8       58.2       5         Vehicle Noise:       65.8       64.0       60.8       56.2       64.7       6         Centerline Distance to Noise Contour (in feet)       70 dBA       65 dBA       60 dBA       55 dBA         Ldn:       65       140       303       652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Medium Trucks:    | 57.7                           | 5              | 6.2        | 49.9        | )        | 48.       | 3           | 56.8         | 3         | 57.0    |
| Vehicle Noise:       65.8       64.0       60.8       56.2       64.7       6         Centerline Distance to Noise Contour (in feet)       70 dBA       65 dBA       60 dBA       55 dBA         Ldn:       65       140       303       652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Heavy Trucks:     | 59.1                           | 5              | 7.6        | 48.6        |          | 49.       | 8           | 58.2         | 2         | 58.3    |
| Centerline Distance to Noise Contour (in feet)       70 dBA       65 dBA       60 dBA       55 dBA         Ldn:       65       140       303       652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Vehicle Noise:    | 65.8                           | 6              | 4.0        | 60.8        |          | 56.       | 2           | 64.7         | 7         | 65.2    |
| 70 dBA       65 dBA       60 dBA       55 dBA         Ldn:       65       140       303       652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Centerline Distan | ce to Noise Con                | tour (in feet) |            |             |          |           |             |              |           |         |
| Ldn: 65 140 303 652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                                |                |            | 70 dBA      | 65       | dBA       | 6           | 60 dBA       | 55        | dBA     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                                | L              | .dn:       | 65          | 1        | 40        |             | 303          | 6         | 52      |
| CIVEL: 70 150 324 698                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                | CN             | IEL:       | 70          | 1        | 50        |             | 324          | 6         | 98      |

Scenario: Future Without Project Road Name: Lincoln Bl. Road Segment: s/o Marina Expy.

|                   |                   | 17.            |        |         |           |                         |             |           |             |          |         |
|-------------------|-------------------|----------------|--------|---------|-----------|-------------------------|-------------|-----------|-------------|----------|---------|
| SITE              | SPECIFIC INF      | PUT DATA       |        |         |           | N                       | IOISE       | MODE      | L INPUT     | S        |         |
| Highway Data      |                   |                |        |         | Site Con  | ditions                 | (Hard       | = 10, S   | oft = 15)   |          |         |
| Average Daily     | Traffic (Adt): 36 | 6,500 vehicles | S      |         |           |                         |             | Autos:    | 15          |          |         |
| Peak Hour         | Percentage:       | 10%            |        |         | Me        | dium Tru                | ucks (2     | Axles):   | 15          |          |         |
| Peak H            | Hour Volume: 3    | 3,650 vehicles | S      |         | He        | avy Truc                | cks (3+     | - Axles): | 15          |          |         |
| Ve                | hicle Speed:      | 40 mph         |        | -       | Vohiolo   | Mix                     |             |           |             |          |         |
| Near/Far La       | ne Distance:      | 82 feet        |        | -       | Venicie I | <b>viix</b><br>icleType |             | Dav       | Evening     | Night    | Daily   |
| Site Data         |                   |                |        |         | Ven       |                         | ,<br>Autoo: | Day       |             |          |         |
| Site Data         |                   |                |        |         | Λ.Λ.      | r<br>Daium Ti           | Autos.      | 01.07     | 12.9%       | 9.0%     | 97.42%  |
| Ba                | rrier Height:     | 0.0 feet       |        |         |           |                         | rucks:      | 04.0 /    | 0 4.970     | 10.370   | 0.740/  |
| Barrier Type (0-V | Vall, 1-Berm):    | 0.0            |        |         | 1         | leavy II                | ucns.       | 00.5%     | o 2.170     | 10.0%    | 0.74%   |
| Centerline Di     | ist. to Barrier:  | 136.0 feet     |        |         | Noise So  | ource El                | levatio     | ns (in f  | eet)        |          |         |
| Centerline Dist.  | to Observer:      | 146.0 feet     |        |         |           | Auto                    | s: (        | 0.000     |             |          |         |
| Barrier Distance  | to Observer:      | 10.0 feet      |        |         | Mediu     | m Truck                 | s: 2        | 2.297     |             |          |         |
| Observer Height   | (Above Pad):      | 5.0 feet       |        |         | Heav      | y Truck                 | s: 8        | 3.006     | Grade Ad    | justment | : 0.0   |
| P                 | ad Elevation:     | 0.0 feet       |        | -       | 1 5       |                         | · D:        |           | fa a ()     |          |         |
| Ro                | ad Elevation:     | 0.0 feet       |        | -       | Lane Eq   | uivaien                 | Dista       |           | feet)       |          |         |
|                   | Road Grade:       | 0.0%           |        |         |           | Auto                    | s: 140      | J.214     |             |          |         |
|                   | Left View:        | -90.0 degree   | es     |         | Mediui    | m Truck                 | s: 140      | 0.151     |             |          |         |
|                   | Right View:       | 90.0 degree    | es     |         | Heav      | y Truck                 | s: 140      | 0.157     |             |          |         |
| FHWA Noise Mod    | lel Calculations  |                |        |         |           |                         |             |           |             |          |         |
| VehicleType       | REMEL             | Traffic Flow   | Dis    | tance   | Finite    | Road                    | Fre         | snel      | Barrier Att | en Ber   | m Atten |
| Autos:            | 66.51             | 4.18           |        | -6.8    | 32        | -1.20                   |             | -1.07     | 0.0         | 000      | 0.000   |
| Medium Trucks:    | 77.72             | -13.05         |        | -6.8    | 32        | -1.20                   |             | -1.15     | 0.0         | 000      | 0.000   |
| Heavy Trucks:     | 82.99             | -17.01         |        | -6.8    | 32        | -1.20                   |             | -1.35     | 0.0         | 000      | 0.000   |
| Unmitigated Nois  | e Levels (witho   | ut Topo and    | barrie | er atte | nuation)  |                         |             |           |             |          |         |
| VehicleType       | Leq Peak Hour     | Leq Day        | ,      | Leq E   | vening    | Leq                     | Night       |           | Ldn         | С        | NEL     |
| Autos:            | 62.7              |                | 60.8   |         | 59.0      |                         | 53          | .0        | 61.6        | 6        | 62.2    |
| Medium Trucks:    | 56.6              | <b>5</b>       | 55.1   |         | 48.8      |                         | 47          | .2        | 55.7        | 7        | 55.9    |
| Heavy Trucks:     | 58.0              | ) :            | 56.5   |         | 47.5      |                         | 48          | .8        | 57.1        | 1        | 57.2    |
| Vehicle Noise:    | 64.7              | 7              | 63.0   |         | 59.7      |                         | 55          | 5.1       | 63.7        | 7        | 64.1    |
| Centerline Distan | ce to Noise Cor   | ntour (in feet | )      |         |           |                         |             |           |             |          |         |
| L                 |                   |                |        | 70      | dBA       | 65                      | dBA         | (         | 60 dBA      | 55       | dBA     |
|                   |                   |                | Ldn:   | Ę       | 55        | 1                       | 19          | I         | 256         | 5        | 52      |
|                   |                   | CI             | VEL:   | Ę       | 59        | 1:                      | 27          |           | 274         | 5        | 91      |
|                   |                   |                |        |         |           |                         |             |           |             |          |         |

Scenario: Future Without Project Road Name: W. Washington Bl. Road Segment: w/o Lincoln Bl. Project Name: Thatcher Job Number: 12185

| SITE              | SPECIFIC IN      | PUT DATA        |         |        |           |            | NOISE             | MODE     | L INPUT            | S        |                   |
|-------------------|------------------|-----------------|---------|--------|-----------|------------|-------------------|----------|--------------------|----------|-------------------|
| Highway Data      |                  |                 |         | S      | Site Con  | ditions    | s (Hard =         | = 10, S  | oft = 15)          |          |                   |
| Average Daily     | Traffic (Adt): 2 | 5,100 vehicles  | 3       |        |           |            |                   | Autos.   | 15                 |          |                   |
| Peak Hour         | · Percentage:    | 10%             |         |        | Me        | dium Ti    | rucks (2          | Axles).  | 15                 |          |                   |
| Peak F            | lour Volume:     | 2,510 vehicles  | 5       |        | Hea       | avy Tru    | ıcks (3+          | Axles).  | 15                 |          |                   |
| Ve                | hicle Speed:     | 35 mph          |         | V      | lohiclo I | liv        |                   |          |                    |          |                   |
| Near/Far La       | ne Distance:     | 46 feet         |         | V      | Vohi      | ila<br>Tvn | 0                 | Dav      | Evening            | Niaht    | Daily             |
| Site Data         |                  |                 |         |        | Veni      | сіетур     | Autos             | 77 50    | LVering            | 0.6%     | 07 120/           |
| Sile Dala         |                  |                 |         |        | 1.40      | dium T     | Aulos.<br>Frucko: | 0/ 00/   | 0 12.970           | 9.0 /0   | 97.42/0<br>1 9/0/ |
| Ba                | rrier Height:    | 0.0 feet        |         |        | IVIE<br>L |            | Tucks.<br>Frucks: | 04.07    | 0 4.9/0<br>/ 0.70/ | 10.3 /0  | 0 740/            |
| Barrier Type (0-W | Vall, 1-Berm):   | 0.0             |         |        | 1         | ieavy i    | TUCKS.            | 00.37    | o Z.170            | 10.0%    | 0.74%             |
| Centerline Di     | st. to Barrier:  | 110.0 feet      |         | ۸      | loise Sc  | ource E    | levatio           | ns (in f | eet)               |          |                   |
| Centerline Dist.  | to Observer:     | 120.0 feet      |         |        |           | Auto       | os: 0             | .000     |                    |          |                   |
| Barrier Distance  | to Observer:     | 10.0 feet       |         |        | Mediur    | n Trucł    | ks: 2             | .297     |                    |          |                   |
| Observer Height   | (Above Pad):     | 5.0 feet        |         |        | Heav      | y Trucł    | ks: 8             | .006     | Grade Adj          | ustment. | 0.0               |
|                   | ad Elevation:    | 0.0 feet        |         |        |           |            |                   |          | fact               |          |                   |
| Ro                | ad Elevation:    | 0.0 feet        |         | L      | ane Equ   | Ivaler     |                   |          | leet)              |          |                   |
|                   | Road Grade:      | 0.0%            |         |        |           | Auto       | DS: 117           | .881     |                    |          |                   |
|                   | Left View:       | -90.0 degree    | es      |        | Meaiur    | n Truci    | KS: 117           | .806     |                    |          |                   |
|                   | Right View:      | 90.0 degree     | es      |        | Heav      | y Truci    | KS: 117           | .814     |                    |          |                   |
| FHWA Noise Mod    | lel Calculations |                 |         |        |           |            |                   |          |                    |          |                   |
| VehicleType       | REMEL            | Traffic Flow    | Dista   | ance   | Finite    | Road       | Fres              | nel      | Barrier Att        | en Ber   | m Atten           |
| Autos:            | 64.30            | 3.14            |         | -5.69  | )         | -1.20      |                   | -1.05    | 0.0                | 000      | 0.000             |
| Medium Trucks:    | 75.75            | -14.10          |         | -5.69  | )         | -1.20      |                   | -1.15    | 0.0                | 000      | 0.000             |
| Heavy Trucks:     | 81.57            | -18.06          |         | -5.69  | )         | -1.20      |                   | -1.40    | 0.0                | 000      | 0.000             |
| Unmitigated Nois  | e Levels (witho  | ut Topo and     | barrier | attenu | uation)   |            |                   |          |                    |          |                   |
| VehicleType       | Leq Peak Hour    | · Leq Day       | Ĺ       | Leq Ev | ening     | Leq        | Night             |          | Ldn                | CI       | VEL               |
| Autos:            | 60.              | 5 5             | 58.7    |        | 56.9      |            | 50.               | 8        | 59.5               | 5        | 60.1              |
| Medium Trucks:    | 54.8             | в ;             | 53.3    |        | 46.9      |            | 45.               | 3        | 53.8               | 3        | 54.0              |
| Heavy Trucks:     | 56.0             | 6 (             | 55.2    |        | 46.2      |            | 47.               | 4        | 55.8               | 3        | 55.9              |
| Vehicle Noise:    | 62.8             | 3 (             | 61.1    |        | 57.6      |            | 53.               | 2        | 61.8               | }        | 62.2              |
| Centerline Distan | ce to Noise Co   | ntour (in feet) | )       |        |           |            |                   |          |                    |          |                   |
| L                 |                  | . ,             |         | 70 d   | BA        | 65         | dBA               |          | 60 dBA             | 55       | dBA               |
|                   |                  |                 | Ldn:    | 34     | ŀ         |            | 73                |          | 157                | 3        | 39                |
|                   |                  | CN              | VEL:    | 36     | 6         |            | 78                |          | 168                | 3        | 62                |
|                   |                  |                 |         |        |           |            |                   |          |                    |          |                   |

Scenario: Future Without Project Road Name: W. Washington Bl. Road Segment: e/o Lincoln Bl. Project Name: Thatcher Job Number: 12185

|                         | -                |                 |              |           |               |            |               |             |          |        |
|-------------------------|------------------|-----------------|--------------|-----------|---------------|------------|---------------|-------------|----------|--------|
| SITE                    | SPECIFIC IN      | PUT DATA        |              |           | Γ             | NOISE N    | /ODE          | L INPUT     | S        |        |
| Highway Data            |                  |                 |              | Site Con  | ditions       | (Hard =    | 10, So        | oft = 15)   |          |        |
| Average Daily           | Traffic (Adt): 2 | 4,100 vehicles  |              |           |               |            | Autos:        | 15          |          |        |
| Peak Hour               | · Percentage:    | 10%             |              | Me        | dium Tr       | rucks (2 A | Axles):       | 15          |          |        |
| Peak H                  | lour Volume:     | 2,410 vehicles  |              | He        | avy Tru       | icks (3+ A | Axles):       | 15          |          |        |
| Ve                      | hicle Speed:     | 35 mph          |              | Vahiala   | Mix           |            |               |             |          |        |
| Near/Far La             | ne Distance:     | 46 feet         |              | Venicie i | ioloType      | 0          | Dav           | Evoning     | Night    | Daily  |
| Cito Doto               |                  |                 |              | Vern      | cierype       | Autoor     | Day<br>77 E0/ | 12.00/      |          |        |
| Site Data               |                  |                 |              | 1.1.      | -<br>- dium T | Autos.     | 0/ 00/        | 12.9%       | 9.0%     | 97.42% |
| Ba                      | rrier Height:    | 0.0 feet        |              | IVIE      |               | TUCKS.     | 04.0%         | 6 4.9%      | 10.3%    | 1.04%  |
| Barrier Type (0-V       | Vall, 1-Berm):   | 0.0             |              | F         | leavy I       | rucks:     | 86.5%         | 2.7%        | 10.8%    | 0.74%  |
| Centerline Di           | ist. to Barrier: | 110.0 feet      |              | Noise So  | ource E       | levation   | s (in fe      | eet)        |          |        |
| Centerline Dist.        | to Observer:     | 120.0 feet      |              |           | Auto          | os: 0.0    | 000           |             |          |        |
| Barrier Distance        | to Observer:     | 10.0 feet       |              | Mediur    | n Truck       | (s: 2.2    | 297           |             |          |        |
| Observer Height         | (Above Pad):     | 5.0 feet        |              | Heav      | v Truck       | (s: 8.0    | 006           | Grade Adj   | ustment: | 0.0    |
| P                       | ad Elevation:    | 0.0 feet        |              |           | ,             |            |               | ,           |          |        |
| Ro                      | ad Elevation:    | 0.0 feet        |              | Lane Eq   | uivalen       | t Distan   | ce (in i      | feet)       |          |        |
|                         | Road Grade:      | 0.0%            |              |           | Auto          | os: 117.   | 881           |             |          |        |
|                         | Left View:       | -90.0 degrees   | S            | Mediur    | n Truck       | (s: 117.)  | 806           |             |          |        |
|                         | Right View:      | 90.0 degrees    | S            | Heav      | y Truck       | (s: 117.)  | 814           |             |          |        |
| FUNA Noise Med          |                  |                 |              |           |               |            |               |             |          |        |
|                         |                  | Troffic Flow    | Distance     | Finite    | Deed          | Frees      |               | Dorrior Att |          |        |
| Venicie i ype           | REIVIEL          |                 | Distance     |           | 4 20          | riesi      | 1 05          |             |          |        |
| Aulos.<br>Madium Truaka | 04.30<br>75.75   | 2.90            | -5.<br>E     | 09<br>09  | -1.20         |            | -1.05         | 0.0         |          | 0.000  |
|                         | 75.75            | -14.28          | -5.          | 09<br>CO  | -1.20         |            | -1.15         | 0.0         |          | 0.000  |
| Heavy Trucks:           | 81.57            | -18.23          | -5.          | 09        | -1.20         |            | -1.40         | 0.0         | 00       | 0.000  |
| Unmitigated Nois        | e Levels (witho  | out Topo and b  | oarrier atte | nuation)  |               |            |               |             |          |        |
| VehicleType             | Leq Peak Hou     | r Leq Day       | Leq I        | Evening   | Leq           | Night      |               | Ldn         | CI       | VEL    |
| Autos:                  | 60.              | 4 5             | 8.5          | 56.7      |               | 50.7       | ,             | 59.3        | 3        | 59.9   |
| Medium Trucks:          | 54.              | 6 5             | 3.1          | 46.7      |               | 45.2       | 2             | 53.6        | ;        | 53.9   |
| Heavy Trucks:           | 56.              | 4 5             | 5.0          | 46.0      |               | 47.2       | 2             | 55.6        | 5        | 55.7   |
| Vehicle Noise:          | 62.              | 6 6             | 0.9          | 57.4      |               | 53.1       |               | 61.6        | 6        | 62.0   |
| Centerline Distan       | ce to Noise Co   | ntour (in feet) |              |           |               |            |               |             |          |        |
| L                       |                  | . ,             | 70           | dBA       | 65            | dBA        | 6             | 60 dBA      | 55       | dBA    |
|                         |                  | L               | dn:          | 33        | -             | 71         | 1             | 153         | 3        | 30     |
|                         |                  | CN              | EL:          | 35        | -             | 76         |               | 163         | 3        | 52     |
|                         |                  |                 |              |           |               |            |               |             |          |        |

Scenario: Future Without Project Road Name: Jefferson Wy. Road Segment: w/o Lincoln Bl.

#### Project Name: Thatcher Job Number: 12185

| Road Segme         | ni. W/O Lincoin B | l.              |            |           |           |          |          |             |         |          |
|--------------------|-------------------|-----------------|------------|-----------|-----------|----------|----------|-------------|---------|----------|
| SITE               | SPECIFIC INP      | UT DATA         |            |           | N         | OISE N   | /IODE    |             | S       |          |
| Highway Data       |                   |                 | 5          | Site Con  | ditions ( | (Hard =  | 10, Sc   | oft = 15)   |         |          |
| Average Daily      | Traffic (Adt): 2  | ,100 vehicles   |            |           |           |          | Autos:   | 15          |         |          |
| Peak Hour          | Percentage:       | 10%             |            | Me        | dium Tru  | cks (2 A | Axles):  | 15          |         |          |
| Peak H             | lour Volume:      | 210 vehicles    |            | He        | avy Truc  | ks (3+ A | Axles):  | 15          |         |          |
| Ve                 | hicle Speed:      | 25 mph          | 1          | /ehicle l | Mix       |          |          |             |         |          |
| Near/Far La        | ne Distance:      | 12 feet         |            | Veh       | icleType  |          | Day      | Evening     | Night   | Daily    |
| Site Data          |                   |                 |            |           | A         | utos:    | 77.5%    | 12.9%       | 9.6%    | 97.42%   |
| Ba                 | rrier Height:     | 0.0 feet        |            | Me        | edium Tru | ucks:    | 84.8%    | 4.9%        | 10.3%   | 1.84%    |
| Barrier Type (0-W  | /all, 1-Berm):    | 0.0             |            | F         | leavy Tru | ucks:    | 86.5%    | 2.7%        | 10.8%   | 0.74%    |
| Centerline Di      | st. to Barrier:   | 60.0 feet       | /          | Voise So  | ource Ele | evation  | s (in fe | eet)        |         |          |
| Centerline Dist.   | to Observer:      | 70.0 feet       |            |           | Autos     | : 0.0    | 000      | ,           |         |          |
| Barrier Distance   | to Observer:      | 10.0 feet       |            | Mediur    | n Trucks  | : 2.2    | 297      |             |         |          |
| Observer Height (  | (Above Pad):      | 5.0 feet        |            | Heav      | v Trucks  | : 8.0    | 006      | Grade Ad    | justmen | t: 0.0   |
| Pa                 | ad Elevation:     | 0.0 feet        |            |           |           |          |          | -           |         |          |
| Roa                | ad Elevation:     | 0.0 feet        | L          | ane Eq    | uivalent  | Distan   | ce (in i | feet)       |         |          |
|                    | Road Grade:       | 0.0%            |            |           | Autos     | : 69.9   | 921      |             |         |          |
|                    | Left View:        | -90.0 degrees   |            | Mediur    | n Trucks  | : 69.    | 795      |             |         |          |
|                    | Right View:       | 90.0 degrees    |            | Heav      | y Trucks  | : 69.    | 807      |             |         |          |
| FHWA Noise Mod     | el Calculations   |                 |            |           |           |          |          |             |         |          |
| VehicleType        | REMEL 7           | raffic Flow     | Distance   | Finite    | Road      | Fresh    | el       | Barrier Att | en Be   | rm Atten |
| Autos:             | 58.73             | -6.18           | -2.29      | )         | -1.20     |          | -0.98    | 0.0         | 000     | 0.000    |
| Medium Trucks:     | 70.80             | -23.41          | -2.28      | 3         | -1.20     |          | -1.15    | 0.0         | 000     | 0.000    |
| Heavy Trucks:      | 77.97             | -27.37          | -2.28      | 3         | -1.20     |          | -1.61    | 0.0         | 000     | 0.000    |
| Unmitigated Noise  | e Levels (withou  | it Topo and bar | rier atten | uation)   |           |          |          |             |         |          |
| VehicleType        | Leq Peak Hour     | Leq Day         | Leq Ev     | /ening    | Leq N     | Vight    |          | Ldn         | С       | NEL      |
| Autos:             | 49.1              | 47.2            | 2          | 45.4      |           | 39.4     | ŀ        | 48.0        | )       | 48.6     |
| Medium Trucks:     | 43.9              | 42.4            | 4          | 36.0      |           | 34.5     | 5        | 43.0        | )       | 43.2     |
| Heavy Trucks:      | 47.1              | 45.7            | 7          | 36.7      |           | 37.9     | )        | 46.3        | 3       | 46.4     |
| Vehicle Noise:     | 52.0              | 50.3            | 3          | 46.4      |           | 42.5     | 5        | 51.0        | )       | 51.4     |
| Centerline Distant | ce to Noise Con   | tour (in feet)  |            |           |           |          |          |             |         |          |
|                    |                   |                 | 70 a       | IBA       | 65 a      | IBA      | 6        | 60 dBA      | 55      | i dBA    |
|                    |                   | Ldr             | <i>:</i> 4 |           | 8         |          |          | 17          |         | 38       |
|                    |                   | CNEL            | .: 4       |           | 9         |          |          | 19          |         | 40       |

Scenario: Future Without Project Road Name: Maxella Av. Road Segment: e/o Lincoln Bl.

| Roud Cognic       |                   | · · · · · · · · · · · · · · · · · · · |            |                                       |                     |          |                 |             |          |          |
|-------------------|-------------------|---------------------------------------|------------|---------------------------------------|---------------------|----------|-----------------|-------------|----------|----------|
| SITE              | SPECIFIC INP      | UT DATA                               |            |                                       | N                   |          | IODE            |             | S        |          |
| Highway Data      |                   |                                       | S          | Site Con                              | ditions (l          | Hard =   | 10, Sc          | oft = 15)   |          |          |
| Average Daily     | Traffic (Adt): 11 | ,900 vehicles                         |            |                                       |                     |          | Autos:          | 15          |          |          |
| Peak Hour         | · Percentage:     | 10%                                   |            | Me                                    | dium Truc           | cks (2 A | xles):          | 15          |          |          |
| Peak H            | Hour Volume: 1    | ,190 vehicles                         |            | He                                    | avy Truck           | (3+ A    | xles):          | 15          |          |          |
| Ve                | hicle Speed:      | 40 mph                                | L.         | /ohiclo l                             | Mix                 |          |                 |             |          |          |
| Near/Far La       | ne Distance:      | 40 feet                               | -          | Vehi                                  | icleType            |          | Day             | Evening     | Night    | Daily    |
| Site Data         |                   |                                       |            |                                       | Au                  | utos:    | 77.5%           | 12.9%       | 9.6%     | 97.42%   |
| Ba                | rrier Height:     | 0.0 feet                              |            | Me                                    | edium Tru           | icks:    | 84.8%           | 4.9%        | 10.3%    | 1.84%    |
| Barrier Type (0-W | Vall, 1-Berm):    | 0.0                                   |            | ŀ                                     | leavy Tru           | icks:    | 86.5%           | 2.7%        | 10.8%    | 0.74%    |
| Centerline Di     | ist. to Barrier:  | 100.0 feet                            |            | laisa Sa                              | urco Elo            | vation   | s (in fa        |             |          |          |
| Centerline Dist.  | to Observer:      | 110.0 feet                            | r          | voise sc                              |                     |          |                 |             |          |          |
| Barrier Distance  | to Observer:      | 10.0 feet                             |            | Modium                                | Aulos.<br>m Truckov | 2.0      | 00              |             |          |          |
| Observer Height   | (Above Pad):      | 5.0 feet                              |            | иеции<br>Цору                         | II TIUCKS.          | <br>     | 297             | Grade Ad    | iustment | μ<br>Ο Ο |
| P                 | ad Elevation:     | 0.0 feet                              |            | Tieav                                 | y TTUCKS.           | 0.0      | 000             | Grade Auj   | ustinent | . 0.0    |
| Ro                | ad Elevation:     | 0.0 feet                              | L          | .ane Eq                               | uivalent            | Distand  | <b>:e (in</b> 1 | feet)       |          |          |
|                   | Road Grade:       | 0.0%                                  |            |                                       | Autos:              | 108.2    | 282             |             |          |          |
|                   | Left View:        | -90.0 degrees                         |            | Mediur                                | n Trucks:           | 108.2    | 200             |             |          |          |
|                   | Right View:       | 90.0 degrees                          |            | Heav                                  | y Trucks:           | 108.2    | 208             |             |          |          |
| FHWA Noise Mod    | lel Calculations  |                                       |            |                                       |                     |          |                 |             |          |          |
| VehicleType       | REMEL 7           | Traffic Flow Di                       | stance     | Finite                                | Road                | Fresn    | el              | Barrier Att | en Be    | rm Atten |
| Autos:            | 66.51             | -0.68                                 | -5.14      | · · · · · · · · · · · · · · · · · · · | -1.20               |          | -1.04           | 0.0         | 000      | 0.000    |
| Medium Trucks:    | 77.72             | -17.92                                | -5.13      | 3                                     | -1.20               |          | -1.15           | 0.0         | 000      | 0.000    |
| Heavy Trucks:     | 82.99             | -21.88                                | -5.13      | }                                     | -1.20               |          | -1.43           | 0.0         | 000      | 0.000    |
| Unmitigated Nois  | e Levels (withou  | It Topo and barr                      | ier atteni | uation)                               |                     |          |                 |             |          |          |
| VehicleType       | Leq Peak Hour     | Leq Day                               | Leq Ev     | ,<br>rening                           | Leq N               | light    |                 | Ldn         | С        | NEL      |
| Autos:            | 59.5              | 57.6                                  |            | 55.8                                  |                     | 49.8     |                 | 58.4        | ł        | 59.0     |
| Medium Trucks:    | 53.5              | 52.0                                  |            | 45.6                                  |                     | 44.0     |                 | 52.5        | 5        | 52.7     |
| Heavy Trucks:     | 54.8              | 53.4                                  |            | 44.3                                  |                     | 45.6     |                 | 53.9        | )        | 54.1     |
| Vehicle Noise:    | 61.5              | 59.8                                  |            | 56.5                                  |                     | 51.9     |                 | 60.5        | 5        | 60.9     |
| Centerline Distan | ce to Noise Con   | tour (in feet)                        |            |                                       |                     |          |                 |             |          |          |
|                   |                   |                                       | 70 d       | IBA                                   | 65 d                | BA       | 6               | 60 dBA      | 55       | dBA      |
|                   |                   | Ldn:                                  | 25         | 5                                     | 55                  |          |                 | 118         | 2        | 255      |
|                   |                   | CNEL:                                 | 27         | 7                                     | 59                  | )        |                 | 127         | 2        | 273      |
|                   |                   |                                       |            |                                       |                     |          |                 |             |          |          |

Scenario: Future Without Project Road Name: Marina Expy. Road Segment: e/o Lincoln Bl.

| Road Segmen        | nt. e/o Lincoin Bi |                |             |                |                   |          |             |           |         |
|--------------------|--------------------|----------------|-------------|----------------|-------------------|----------|-------------|-----------|---------|
| SITE               | SPECIFIC INP       | UT DATA        |             |                | NOISE N           | NODE     | L INPUT     | S         |         |
| Highway Data       |                    |                | S           | Site Condition | s (Hard =         | 10, So   | oft = 15)   |           |         |
| Average Daily      | Traffic (Adt): 23  | 600 vehicles   |             |                |                   | Autos:   | 15          |           |         |
| Peak Hour          | Percentage:        | 10%            |             | Medium T       | rucks (2 /        | Axles):  | 15          |           |         |
| Peak H             | lour Volume: 2,    | 360 vehicles   |             | Heavy Tr       | ucks (3+ /        | Axles):  | 15          |           |         |
| Ve                 | hicle Speed:       | 40 mph         | L.          | /ehicle Mix    |                   |          |             |           |         |
| Near/Far La        | ne Distance:       | 80 feet        |             | VehicleTyp     | e                 | Day      | Evening     | Night     | Daily   |
| Site Data          |                    |                |             |                | Autos:            | 77.5%    | 12.9%       | 9.6%      | 97.42%  |
| Bai                | rrier Height:      | 0.0 feet       |             | Medium         | Trucks:           | 84.8%    | 4.9%        | 10.3%     | 1.84%   |
| Barrier Type (0-W  | /all, 1-Berm):     | 0.0            |             | Heavy          | Trucks:           | 86.5%    | 2.7%        | 10.8%     | 0.74%   |
| Centerline Dis     | st. to Barrier:    | 104.0 feet     | ٨           | loise Source l | Elevation         | s (in fe | eet)        |           |         |
| Centerline Dist.   | to Observer:       | 14.0 feet      |             | Aut            |                   | 000      |             |           |         |
| Barrier Distance   | to Observer:       | 10.0 feet      |             | Medium Truc    | ks <sup>.</sup> 2 | 297      |             |           |         |
| Observer Height (  | (Above Pad):       | 5.0 feet       |             | Heavy Truc     | ks: 8             | 006      | Grade Ad    | iustment: | 0.0     |
| Pa                 | ad Elevation:      | 0.0 feet       |             |                |                   |          |             |           |         |
| Roa                | ad Elevation:      | 0.0 feet       | L           | ane Equivale.  | nt Distan         | ce (in i | feet)       |           |         |
|                    | Road Grade:        | 0.0%           |             | Aut            | os: 106.          | 869      |             |           |         |
|                    | Left View:         | -90.0 degrees  |             | Medium Truc    | <i>ks:</i> 106.   | 786      |             |           |         |
|                    | Right View:        | 90.0 degrees   |             | Heavy Truc     | <i>ks:</i> 106.   | 794      |             |           |         |
| FHWA Noise Mod     | el Calculations    |                |             |                |                   |          |             |           |         |
| VehicleType        | REMEL 7            | raffic Flow    | Distance    | Finite Road    | Fresr             | nel      | Barrier Att | en Ber    | m Atten |
| Autos:             | 66.51              | 2.29           | -5.05       | -1.20          | )                 | -1.05    | 0.0         | 000       | 0.000   |
| Medium Trucks:     | 77.72              | -14.95         | -5.05       | -1.20          |                   | -1.15    | 0.0         | 000       | 0.000   |
| Heavy Trucks:      | 82.99              | -18.90         | -5.05       | -1.20          | )                 | -1.42    | 0.0         | 000       | 0.000   |
| Unmitigated Noise  | e Levels (withou   | t Topo and ba  | rrier atten | uation)        |                   |          |             |           |         |
| VehicleType        | Leq Peak Hour      | Leq Day        | Leq Ev      | rening Leo     | q Night           |          | Ldn         | CI        | VEL     |
| Autos:             | 62.5               | 60.            | .7          | 58.9           | 52.8              | 3        | 61.5        | 5         | 62.1    |
| Medium Trucks:     | 56.5               | 55.            | .0          | 48.7           | 47.1              | l        | 55.6        | 6         | 55.8    |
| Heavy Trucks:      | 57.8               | 56.            | .4          | 47.4           | 48.6              | 6        | 57.0        | )         | 57.1    |
| Vehicle Noise:     | 64.6               | 62.            | .8          | 59.5           | 55.0              | )        | 63.5        | 5         | 64.0    |
| Centerline Distant | ce to Noise Con    | tour (in feet) |             |                |                   |          |             |           |         |
|                    |                    |                | 70 d        | BA 65          | 5 dBA             | 6        | 60 dBA      | 55        | dBA     |
|                    |                    | Ld             | n: 42       | 2              | 91                |          | 196         | 4         | 23      |
|                    |                    | CNE            | L: 45       | 5              | 97                |          | 210         | 4         | 53      |

Scenario: Future With Project Road Name: Lincoln Bl. Road Segment: n/o W. Washington Bl. Project Name: Thatcher Job Number: 12185

|                                      |                |       | 1        |          |         |                |          |             |          |         |
|--------------------------------------|----------------|-------|----------|----------|---------|----------------|----------|-------------|----------|---------|
| SITE SPECIFIC IN                     | PUT DATA       |       |          | Site Com | ditions | NOISE          | MODE     |             | 5        |         |
| Highway Data                         |                |       |          | Site Con | aitions | s (nara        | = 10, 30 | Dit = 15)   |          |         |
| Average Daily Traffic (Adt): 3       | 3,700 vehicle  | S     |          |          |         |                | Autos:   | 15          |          |         |
| Peak Hour Percentage:                | 10%            |       |          | Me       | dium T  | rucks (2       | Axles):  | 15          |          |         |
| Peak Hour Volume:                    | 3,370 vehicle  | S     |          | He       | avy Tru | ıcks (3+       | Axles):  | 15          |          |         |
| Vehicle Speed:                       | 40 mph         |       | -        | Vehicle  | Mix     |                |          |             |          |         |
| Near/Far Lane Distance:              | 82 feet        |       |          | Veh      | icleTyp | е              | Day      | Evening     | Night    | Daily   |
| Site Data                            |                |       |          |          |         | Autos:         | 77.5%    | 12.9%       | 9.6%     | 97.42%  |
| Barrier Height:                      | 0.0 feet       |       |          | M        | edium T | Trucks:        | 84.8%    | 4.9%        | 10.3%    | 1.84%   |
| Barrier Type (0-Wall, 1-Berm):       | 0.0            |       |          | I        | leavy T | Trucks:        | 86.5%    | 2.7%        | 10.8%    | 0.74%   |
| Centerline Dist. to Barrier:         | 136.0 feet     |       | _        | Noise Su | ource F | levatio        | ns (in f | eet)        |          |         |
| Centerline Dist. to Observer:        | 146.0 feet     |       | -        | 10,00 0  | Διιτά   |                |          |             |          |         |
| Barrier Distance to Observer:        | 10.0 feet      |       |          | Modiu    | m Truc  | $k_{0}$        | 207      |             |          |         |
| Observer Height (Above Pad):         | 5.0 feet       |       |          | Hoa      | n Truci | no. 2<br>ko: 8 | 2006     | Grade Ad    | iustment | .00     |
| Pad Elevation:                       | 0.0 feet       |       |          | Tieav    | y muci  | NS. C          | 5.000    | Grade Auj   | usinen.  | 0.0     |
| Road Elevation:                      | 0.0 feet       |       |          | Lane Eq  | uivaler | nt Dista       | nce (in  | feet)       |          |         |
| Road Grade:                          | 0.0%           |       |          |          | Auto    | os: 140        | ).214    |             |          |         |
| Left View:                           | -90.0 degre    | es    |          | Mediu    | m Trucl | ks: 140        | ).151    |             |          |         |
| Right View:                          | 90.0 degre     | es    |          | Heav     | y Trucl | ks: 140        | ).157    |             |          |         |
| FUNA Noise Medal Colouistica         |                |       |          |          |         |                |          |             |          |         |
|                                      | Troffic Flow   |       |          | Finito   | Dood    | Fro            | nal      | Dorrior Att | an Dar   | m Atton |
|                                      |                | Dis   |          |          | 1 20    | Fies           | 1 07     |             |          |         |
| Autos. 00.51<br>Modium Trucko: 77.72 | 3.04           |       | -0.0     | 2        | -1.20   |                | -1.07    | 0.0         | 000      | 0.000   |
| Hoovy Trucks: 22.00                  | -13.40         |       | -0.0     | 2        | -1.20   |                | -1.10    | 0.0         |          | 0.000   |
| neavy mucks. 62.99                   | -17.30         |       | -0.0     | 2        | -1.20   |                | -1.30    | 0.0         | 000      | 0.000   |
| Unmitigated Noise Levels (with       | out Topo and   | barri | er atter | nuation) |         |                |          |             | 1        |         |
| VehicleType Leq Peak Hou             | r Leq Day      | /     | Leq E    | vening   | Leq     | n Night        |          | Ldn         | CI       | VEL     |
| <i>Autos:</i> 62.                    | 3              | 60.4  |          | 58.7     |         | 52             | .6       | 61.2        | 2        | 61.8    |
| Medium Trucks: 56.                   | 3              | 54.8  |          | 48.4     |         | 46             | .9       | 55.3        | 3        | 55.6    |
| Heavy Trucks: 57.                    | 6              | 56.2  |          | 47.2     |         | 48             | .4       | 56.8        | 3        | 56.9    |
| Vehicle Noise: 64.                   | 3              | 62.6  |          | 59.3     |         | 54             | .8       | 63.3        | 3        | 63.8    |
| Centerline Distance to Noise Co      | ntour (in feet | )     |          |          |         |                |          |             |          |         |
|                                      |                |       | 70       | dBA      | 65      | 6 dBA          | (        | 60 dBA      | 55       | dBA     |
|                                      |                | Ldn:  | 5        | 52       |         | 113            |          | 243         | 5        | 23      |
|                                      | Ci             | NEL:  | 5        | 56       |         | 121            |          | 260         | 5        | 60      |

Scenario: Future With Project Road Name: Lincoln Bl. Road Segment: s/o W. Washington Bl. Project Name: Thatcher Job Number: 12185

|                   |                          | 3              |        |          |           |                         |                |                   |             |          |         |
|-------------------|--------------------------|----------------|--------|----------|-----------|-------------------------|----------------|-------------------|-------------|----------|---------|
| SITE              | SPECIFIC INP             | UT DATA        |        |          |           | N                       | OISE           | MODE              |             | S        |         |
| Highway Data      |                          |                |        |          | Site Con  | ditions                 | (Hard          | = 10, Se          | oft = 15)   |          |         |
| Average Daily     | Traffic (Adt): 43        | ,400 vehicles  | 6      |          |           |                         |                | Autos:            | 15          |          |         |
| Peak Hour         | <sup>r</sup> Percentage: | 10%            |        |          | Me        | dium Tru                | icks (2        | Axles):           | 15          |          |         |
| Peak H            | our Volume: 4            | ,340 vehicles  | 6      |          | He        | avy Truc                | :ks (3+        | Axles):           | 15          |          |         |
| Ve                | ehicle Speed:            | 40 mph         |        | -        | Vahiala   | Mix                     |                |                   |             |          |         |
| Near/Far La       | ane Distance:            | 82 feet        |        | -        | Venicie i | <b>VIIX</b><br>icleType |                | Dav               | Evening     | Night    | Daily   |
| Site Data         |                          |                |        |          | Ven       |                         | lutoo          | Day<br>77 50/     |             |          |         |
| Site Data         |                          | _              |        |          | ٨.٨       | r<br>dium Tr            | ulos.          | 0/ 00/            | 12.9%       | 9.0%     | 97.42%  |
| Ba                | rrier Height:            | 0.0 feet       |        |          |           |                         | UCKS.          |                   | 4.9%        | 10.3%    | 1.04%   |
| Barrier Type (0-V | Vall, 1-Berm):           | 0.0            |        |          | г         | leavy II                | UCKS.          | 86.5%             | o 2.1%      | 10.8%    | 0.74%   |
| Centerline Di     | ist. to Barrier:         | 136.0 feet     |        |          | Noise So  | ource El                | evatio         | ns (in f          | eet)        |          |         |
| Centerline Dist.  | to Observer:             | 146.0 feet     |        |          |           | Autos                   | s: (           | 0.000             |             |          |         |
| Barrier Distance  | to Observer:             | 10.0 feet      |        |          | Mediui    | n Trucks                | s: 2           | 2.297             |             |          |         |
| Observer Height   | (Above Pad):             | 5.0 feet       |        |          | Heav      | y Trucks                | s: 8           | 3.006             | Grade Ad    | justment | : 0.0   |
| Р                 | ad Elevation:            | 0.0 feet       |        | -        |           |                         | <b>D'</b> - (- | <i>(</i> <b>)</b> | (           |          |         |
| Ro                | ad Elevation:            | 0.0 feet       |        | _        | Lane Eq   | uivaient                | Dista          | nce (In           | feet)       |          |         |
|                   | Road Grade:              | 0.0%           |        |          |           | Autos                   | s: 14(         | ).214             |             |          |         |
|                   | Left View:               | -90.0 degree   | es     |          | Mediui    | n Trucks                | s: 14(         | 0.151             |             |          |         |
|                   | Right View:              | 90.0 degree    | es     |          | Heav      | y Trucks                | s: 140         | ).157             |             |          |         |
| FHWA Noise Mod    | lel Calculations         |                |        |          |           |                         |                |                   |             |          |         |
| VehicleType       | REMEL                    | Traffic Flow   | Dis    | tance    | Finite    | Road                    | Fres           | snel              | Barrier Att | en Ber   | m Atten |
| Autos:            | 66.51                    | 4.94           |        | -6.8     | 2         | -1.20                   |                | -1.07             | 0.0         | 000      | 0.000   |
| Medium Trucks:    | 77.72                    | -12.30         |        | -6.8     | 2         | -1.20                   |                | -1.15             | 0.0         | 000      | 0.000   |
| Heavy Trucks:     | 82.99                    | -16.26         |        | -6.8     | 2         | -1.20                   |                | -1.35             | 0.0         | 000      | 0.000   |
| Unmitigated Nois  | e Levels (withou         | ut Topo and    | barrie | er atter | nuation)  |                         |                |                   |             |          |         |
| VehicleType       | Leq Peak Hour            | Leq Day        |        | Leq E    | vening    | Leq                     | Night          |                   | Ldn         | C        | NEL     |
| Autos:            | 63.4                     |                | 61.5   |          | 59.8      |                         | 53             | .7                | 62.3        | 3        | 62.9    |
| Medium Trucks:    | 57.4                     |                | 55.9   |          | 49.5      |                         | 48             | .0                | 56.4        | 1        | 56.7    |
| Heavy Trucks:     | 58.7                     | 5              | 57.3   |          | 48.3      |                         | 49             | .5                | 57.9        | Э        | 58.0    |
| Vehicle Noise:    | 65.4                     | . 6            | 63.7   |          | 60.4      |                         | 55             | .9                | 64.4        | 1        | 64.9    |
| Centerline Distan | ce to Noise Con          | tour (in feet) | )      |          |           |                         |                |                   |             |          |         |
|                   |                          |                |        | 70       | dBA       | 65 (                    | dBA            | (                 | 60 dBA      | 55       | dBA     |
|                   |                          | l              | Ldn:   | 6        | 62        | 13                      | 33             | I                 | 287         | 6        | 519     |
|                   |                          | CN             | IEL:   | 6        | 6         | 14                      | 43             |                   | 308         | 6        | 63      |
|                   |                          |                |        |          |           |                         |                |                   |             |          |         |

Scenario: Future With Project Road Name: Lincoln Bl. Road Segment: n/o Jefferson Wy.

| Noau Seymen        |                   | vvy.           |             |          |          |           |          |             |           |         |
|--------------------|-------------------|----------------|-------------|----------|----------|-----------|----------|-------------|-----------|---------|
| SITE               | SPECIFIC INP      | UT DATA        |             |          | N        |           | /IODE    |             | S         |         |
| Highway Data       |                   |                |             | Site Cor | ditions  | (Hard =   | 10, So   | oft = 15)   |           |         |
| Average Daily      | Traffic (Adt): 44 | ,300 vehicles  |             |          |          |           | Autos:   | 15          |           |         |
| Peak Hour          | Percentage:       | 10%            |             | Me       | dium Tru | ucks (2 A | (xles)   | 15          |           |         |
| Peak H             | lour Volume: 4,   | ,430 vehicles  |             | He       | avy Truc | cks (3+ A | (xles)   | 15          |           |         |
| Ve                 | hicle Speed:      | 40 mph         |             | Vehicle  | Mix      |           |          |             |           |         |
| Near/Far La        | ne Distance:      | 82 feet        |             | Veh      | icleType |           | Day      | Evening     | Night     | Daily   |
| Site Data          |                   |                |             |          | A        | Autos:    | 77.5%    | 12.9%       | 9.6%      | 97.42%  |
| Bai                | rrier Heiaht:     | 0.0 feet       |             | M        | edium Tr | rucks:    | 84.8%    | 4.9%        | 10.3%     | 1.84%   |
| Barrier Type (0-W  | /all, 1-Berm):    | 0.0            |             | I        | Heavy Tr | rucks:    | 86.5%    | 2.7%        | 10.8%     | 0.74%   |
| Centerline Dis     | st. to Barrier:   | 136.0 feet     |             | Noise S  | ource El | evation   | s (in fe | eet)        |           |         |
| Centerline Dist.   | to Observer:      | 146.0 feet     |             |          | Autos    | s: 0.0    | 000      |             |           |         |
| Barrier Distance   | to Observer:      | 10.0 feet      |             | Mediu    | m Trucks | s: 2.2    | 297      |             |           |         |
| Observer Height (  | Above Pad):       | 5.0 feet       |             | Heav     | v Trucks | s: 8.0    | 006      | Grade Ad    | iustment. | 0.0     |
| Pa                 | ad Elevation:     | 0.0 feet       |             |          |          |           |          |             |           |         |
| Roa                | ad Elevation:     | 0.0 feet       |             | Lane Eq  | uivalent | Distanc   | ce (în i | feet)       |           |         |
|                    | Road Grade:       | 0.0%           |             |          | Autos    | s: 140.   | 214      |             |           |         |
|                    | Left View:        | -90.0 degrees  |             | Mediu    | m Trucks | s: 140.   | 151      |             |           |         |
|                    | Right View:       | 90.0 degrees   |             | Heav     | y Trucks | s: 140.   | 157      |             |           |         |
| FHWA Noise Mod     | el Calculations   |                |             |          |          |           |          |             |           |         |
| VehicleType        | REMEL 7           | raffic Flow    | Distance    | Finite   | Road     | Fresn     | el       | Barrier Att | en Ber    | m Atten |
| Autos:             | 66.51             | 5.02           | -6.8        | 32       | -1.20    |           | -1.07    | 0.0         | 000       | 0.000   |
| Medium Trucks:     | 77.72             | -12.21         | -6.8        | 32       | -1.20    |           | -1.15    | 0.0         | 000       | 0.000   |
| Heavy Trucks:      | 82.99             | -16.17         | -6.8        | 32       | -1.20    |           | -1.35    | 0.0         | 000       | 0.000   |
| Unmitigated Noise  | e Levels (withou  | It Topo and ba | arrier atte | nuation) |          |           |          |             |           |         |
| VehicleType        | Leq Peak Hour     | Leq Day        | Leq E       | Evening  | Leq      | Night     |          | Ldn         | Cl        | VEL     |
| Autos:             | 63.5              | 61             | .6          | 59.9     |          | 53.8      |          | 62.4        | ł         | 63.0    |
| Medium Trucks:     | 57.5              | 56             | 5.0         | 49.6     |          | 48.1      |          | 56.5        | 5         | 56.8    |
| Heavy Trucks:      | 58.8              | 57             | <b>'</b> .4 | 48.3     |          | 49.6      |          | 58.0        | )         | 58.1    |
| Vehicle Noise:     | 65.5              | 63             | 3.8         | 60.5     |          | 56.0      |          | 64.5        | 5         | 64.9    |
| Centerline Distant | ce to Noise Con   | tour (in feet) |             |          |          |           |          |             |           |         |
|                    |                   |                | 70          | dBA      | 65 (     | dBA       | 6        | 60 dBA      | 55        | dBA     |
|                    |                   | La             | in:         | 63       | 13       | 35        |          | 291         | 6         | 28      |
|                    |                   | CNE            | EL:         | 67       | 14       | 45        |          | 312         | 6         | 72      |

Scenario: Future With Project Road Name: Lincoln Bl. Road Segment: s/o Jefferson Wy.

| Noau Segine       |                   | vvy.           |             |          |          |           |          |             |          |         |
|-------------------|-------------------|----------------|-------------|----------|----------|-----------|----------|-------------|----------|---------|
| SITE              | SPECIFIC INP      | UT DATA        |             |          | N        |           | /IODE    |             | S        |         |
| Highway Data      |                   |                |             | Site Cor | ditions  | (Hard =   | 10, So   | oft = 15)   |          |         |
| Average Daily     | Traffic (Adt): 44 | ,200 vehicles  |             |          |          |           | Autos:   | 15          |          |         |
| Peak Hour         | Percentage:       | 10%            |             | Ме       | dium Tru | icks (2 A | Axles):  | 15          |          |         |
| Peak F            | lour Volume: 4    | ,420 vehicles  |             | He       | avy Truc | :ks (3+ A | Axles):  | 15          |          |         |
| Ve                | hicle Speed:      | 40 mph         | _           | Vehicle  | Mix      |           |          |             |          |         |
| Near/Far La       | ne Distance:      | 82 feet        | _           | Veh      | icleType |           | Day      | Evening     | Night    | Daily   |
| Site Data         |                   |                |             |          | A        | Autos:    | 77.5%    | 12.9%       | 9.6%     | 97.42%  |
| Ba                | rrier Height:     | 0.0 feet       |             | M        | edium Tr | ucks:     | 84.8%    | 4.9%        | 10.3%    | 1.84%   |
| Barrier Type (0-W | /all, 1-Berm):    | 0.0            |             | I        | Heavy Tr | ucks:     | 86.5%    | 2.7%        | 10.8%    | 0.74%   |
| Centerline Di     | st. to Barrier:   | 136.0 feet     | _           | Noise S  | ource El | evation   | s (in fe | eet)        |          |         |
| Centerline Dist.  | to Observer:      | 146.0 feet     | -           |          | Autos    | s: 0.(    | 000      |             |          |         |
| Barrier Distance  | to Observer:      | 10.0 feet      |             | Mediu    | m Trucks | s: 2.2    | 297      |             |          |         |
| Observer Height   | (Above Pad):      | 5.0 feet       |             | Heav     | v Trucks | s: 8.0    | 006      | Grade Ad    | iustment | : 0.0   |
| P                 | ad Elevation:     | 0.0 feet       |             |          | ,        |           |          |             |          |         |
| Ro                | ad Elevation:     | 0.0 feet       | -           | Lane Eq  | uivalent | Distand   | ce (in i | feet)       |          |         |
|                   | Road Grade:       | 0.0%           |             |          | Autos    | s: 140.2  | 214      |             |          |         |
|                   | Left View:        | -90.0 degrees  |             | Mediu    | m Trucks | s: 140.   | 151      |             |          |         |
|                   | Right View:       | 90.0 degrees   |             | Heav     | y Trucks | s: 140.   | 157      |             |          |         |
| FHWA Noise Mod    | el Calculations   |                |             |          |          |           |          |             |          |         |
| VehicleType       | REMEL             | Traffic Flow   | Distance    | Finite   | Road     | Fresn     | el       | Barrier Att | en Ber   | m Atten |
| Autos:            | 66.51             | 5.01           | -6.8        | 2        | -1.20    |           | -1.07    | 0.0         | 000      | 0.000   |
| Medium Trucks:    | 77.72             | -12.22         | -6.8        | 2        | -1.20    |           | -1.15    | 0.0         | 000      | 0.000   |
| Heavy Trucks:     | 82.99             | -16.18         | -6.8        | 2        | -1.20    |           | -1.35    | 0.0         | 000      | 0.000   |
| Unmitigated Nois  | e Levels (withou  | ıt Topo and ba | nrier atter | nuation) |          |           |          |             |          |         |
| VehicleType       | Leq Peak Hour     | Leq Day        | Leq E       | vening   | Leq      | Night     |          | Ldn         | C        | NEL     |
| Autos:            | 63.5              | 61             | .6          | 59.8     |          | 53.8      | 5        | 62.4        | ŀ        | 63.0    |
| Medium Trucks:    | 57.5              | 56             | .0          | 49.6     |          | 48.1      |          | 56.5        | 5        | 56.8    |
| Heavy Trucks:     | 58.8              | 57             | .4          | 48.3     |          | 49.6      | ;        | 57.9        | )        | 58.1    |
| Vehicle Noise:    | 65.5              | 63             | .8          | 60.5     |          | 56.0      | )        | 64.5        | 5        | 64.9    |
| Centerline Distan | ce to Noise Con   | tour (in feet) |             |          |          |           |          |             |          |         |
| L                 |                   |                | 70          | dBA      | 65 0     | dBA       | 6        | 60 dBA      | 55       | dBA     |
|                   |                   | Ld             | In: 6       | 63       | 13       | 35        | u        | 291         | 6        | 627     |
|                   |                   | CNE            | :L: 6       | 67       | 14       | 45        |          | 311         | 6        | 671     |
|                   |                   |                |             |          |          |           |          |             |          |         |

Scenario: Future With Project Road Name: Lincoln Bl. Road Segment: n/o Maxella Av.

| Road Seyme        | nt. 11/0 Maxella A | ν.             |             |               |           |          |          |              |          |         |
|-------------------|--------------------|----------------|-------------|---------------|-----------|----------|----------|--------------|----------|---------|
| SITE              | SPECIFIC INP       | UT DATA        |             |               | N         | OISE N   | IODE     | L INPUT      | S        |         |
| Highway Data      |                    |                | S           | Site Con      | ditions ( | Hard =   | 10, So   | oft = 15)    |          |         |
| Average Daily     | Traffic (Adt): 41  | ,000 vehicles  |             |               |           | A        | Autos:   | 15           |          |         |
| Peak Hour         | Percentage:        | 10%            |             | Me            | dium Tru  | cks (2 A | xles):   | 15           |          |         |
| Peak F            | lour Volume: 4     | ,100 vehicles  |             | He            | avy Truci | ks (3+ A | xles):   | 15           |          |         |
| Ve                | hicle Speed:       | 40 mph         | 1           | /ehicle       | Mix       |          |          |              |          |         |
| Near/Far La       | ne Distance:       | 82 feet        |             | Veh           | icleType  |          | Day      | Evening      | Night    | Daily   |
| Site Data         |                    |                |             |               | A         | utos:    | 77.5%    | 12.9%        | 9.6%     | 97.42%  |
| Ba                | rrier Height:      | 0.0 feet       |             | Me            | ədium Tru | ucks: 8  | 84.8%    | 4.9%         | 10.3%    | 1.84%   |
| Barrier Type (0-W | /all, 1-Berm):     | 0.0            |             | ŀ             | leavy Tru | ucks: 8  | 36.5%    | 2.7%         | 10.8%    | 0.74%   |
| Centerline Di     | st. to Barrier:    | 136.0 feet     | ^           | Noise Sc      | ource Ele | vations  | : (in fe | eet)         |          |         |
| Centerline Dist.  | to Observer:       | 146.0 feet     | -           |               |           | · 00     | 00       | ,            |          |         |
| Barrier Distance  | to Observer:       | 10.0 feet      |             | Mediu         | n Trucks  | · 2.2    | 97       |              |          |         |
| Observer Height   | (Above Pad):       | 5.0 feet       |             | Heav          | v Trucks  | · 80     | 06       | Grade Adi    | iustment | : 0.0   |
| P                 | ad Elevation:      | 0.0 feet       |             |               | y maone   | . 0.0    |          | - ···· · ,   |          |         |
| Ro                | ad Elevation:      | 0.0 feet       | L           | .ane Eq       | uivalent  | Distanc  | e (in :  | feet)        |          |         |
|                   | Road Grade:        | 0.0%           |             |               | Autos     | : 140.2  | 214      |              |          |         |
|                   | Left View:         | -90.0 degrees  |             | Mediur        | n Trucks  | : 140.1  | 51       |              |          |         |
|                   | Right View:        | 90.0 degrees   |             | Heav          | y Trucks  | : 140.1  | 57       |              |          |         |
| FHWA Noise Mod    | el Calculations    |                |             |               |           |          |          |              |          |         |
| VehicleType       | REMEL 7            | Traffic Flow   | Distance    | Finite        | Road      | Fresn    | el       | Barrier Atte | en Ber   | m Atten |
| Autos:            | 66.51              | 4.69           | -6.82       | 2             | -1.20     |          | -1.07    | 0.0          | 000      | 0.000   |
| Medium Trucks:    | 77.72              | -12.55         | -6.82       | 2             | -1.20     |          | 1.15     | 0.0          | 000      | 0.000   |
| Heavy Trucks:     | 82.99              | -16.51         | -6.82       | <u>}</u>      | -1.20     |          | 1.35     | 0.0          | 000      | 0.000   |
| Unmitigated Nois  | e Levels (withou   | It Topo and ba | rrier atten | uation)       |           |          |          |              |          |         |
| VehicleType       | Leq Peak Hour      | Leq Day        | Leq Ev      | <i>rening</i> | Leq N     | light    |          | Ldn          | Cl       | NEL     |
| Autos:            | 63.2               | 61.            | 3           | 59.5          |           | 53.5     |          | 62.1         |          | 62.7    |
| Medium Trucks:    | 57.1               | 55.            | 6           | 49.3          |           | 47.7     |          | 56.2         | 2        | 56.4    |
| Heavy Trucks:     | 58.5               | 57.            | 0           | 48.0          |           | 49.3     |          | 57.6         | 6        | 57.7    |
| Vehicle Noise:    | 65.2               | 63.            | 5           | 60.2          |           | 55.6     |          | 64.2         | 2        | 64.6    |
| Centerline Distan | ce to Noise Con    | tour (in feet) |             |               |           |          |          |              |          |         |
|                   |                    |                | 70 a        | IBA           | 65 a      | IBA      | 6        | 60 dBA       | 55       | dBA     |
|                   |                    | Ldı            | n: 60       | )             | 12        | 8        |          | 277          | 5        | 96      |
|                   |                    | CNEL           | L: 64       | 4             | 13        | 8        |          | 296          | 6        | 38      |
Scenario: Future With Project Road Name: Lincoln Bl. Road Segment: s/o Maxella Av.

#### Project Name: Thatcher Job Number: 12185

| Road Seyme               | ni. s/o waxelia A | .v.            |              |          |          |                      |          |             |          |         |
|--------------------------|-------------------|----------------|--------------|----------|----------|----------------------|----------|-------------|----------|---------|
| SITE                     | SPECIFIC INP      | UT DATA        |              |          | N        | OISE N               | /IODE    | L INPUT     | S        |         |
| Highway Data             |                   |                |              | Site Con | ditions  | (Hard =              | 10, So   | oft = 15)   |          |         |
| Average Daily            | Traffic (Adt): 47 | ,000 vehicles  |              |          |          |                      | Autos:   | 15          |          |         |
| Peak Hour                | Percentage:       | 10%            |              | Me       | dium Tru | ıcks (2 A            | (xles)   | 15          |          |         |
| Peak H                   | lour Volume: 4    | ,700 vehicles  |              | He       | avy Truc | :ks (3+ A            | (xles)   | 15          |          |         |
| Ve                       | hicle Speed:      | 40 mph         |              | Vehicle  | Mix      |                      |          |             |          |         |
| Near/Far La              | ne Distance:      | 82 feet        | _            | Veh      | icleType |                      | Day      | Evening     | Night    | Daily   |
| Site Data                |                   |                |              |          | A        | lutos:               | 77.5%    | 12.9%       | 9.6%     | 97.42%  |
| Ba                       | rrier Height:     | 0.0 feet       |              | M        | ədium Tr | ucks:                | 84.8%    | 4.9%        | 10.3%    | 1.84%   |
| Barrier Type (0-W        | /all, 1-Berm):    | 0.0            |              | ŀ        | leavy Tr | ucks:                | 86.5%    | 2.7%        | 10.8%    | 0.74%   |
| Centerline Di            | st. to Barrier:   | 136.0 feet     | _            | Noise So | ource El | evation              | s (in fe | eet)        |          |         |
| Centerline Dist.         | to Observer:      | 146.0 feet     | _            | 10.00 0  |          | eruen                | 000      |             |          |         |
| Barrier Distance         | to Observer:      | 10.0 feet      |              | Mediu    | n Trucks | 22<br>22             | 97<br>97 |             |          |         |
| Observer Height (        | (Above Pad):      | 5.0 feet       |              | Heav     | v Trucks | s <sup>.</sup> 8(    | 006      | Grade Ad    | iustment | : 0.0   |
| Pa                       | ad Elevation:     | 0.0 feet       | _            | , iour   | y maone  |                      |          |             |          |         |
| Roa                      | ad Elevation:     | 0.0 feet       | _            | Lane Eq  | uivalent | Distand              | ce (in   | feet)       |          |         |
|                          |                   |                | Autos        | s: 140.2 | 214      |                      |          |             |          |         |
| Left View: -90.0 degrees |                   |                |              | Mediu    | n Trucks | s: 140. <sup>-</sup> | 151      |             |          |         |
|                          | Right View:       | 90.0 degrees   |              | Heav     | y Trucks | s: 140. <sup>-</sup> | 157      |             |          |         |
| FHWA Noise Mod           | el Calculations   |                |              |          |          |                      |          |             |          |         |
| VehicleType              | REMEL 1           | Traffic Flow   | Distance     | Finite   | Road     | Fresn                | el       | Barrier Att | en Ber   | m Atten |
| Autos:                   | 66.51             | 5.28           | -6.8         | 2        | -1.20    |                      | -1.07    | 0.0         | 000      | 0.000   |
| Medium Trucks:           | 77.72             | -11.96         | -6.8         | 2        | -1.20    |                      | -1.15    | 0.0         | 000      | 0.000   |
| Heavy Trucks:            | 82.99             | -15.91         | -6.8         | 2        | -1.20    |                      | -1.35    | 0.0         | 000      | 0.000   |
| Unmitigated Noise        | e Levels (withou  | it Topo and ba | arrier atter | nuation) |          |                      |          |             |          |         |
| VehicleType              | Leq Peak Hour     | Leq Day        | Leq E        | vening   | Leq I    | Night                |          | Ldn         | CI       | NEL     |
| Autos:                   | 63.8              | 61             | .9           | 60.1     |          | 54.1                 |          | 62.7        | 7        | 63.3    |
| Medium Trucks:           | 57.7              | 56             | .2           | 49.9     |          | 48.3                 |          | 56.8        | 3        | 57.0    |
| Heavy Trucks:            | 59.1              | 57             | .6           | 48.6     |          | 49.9                 |          | 58.2        | 2        | 58.3    |
| Vehicle Noise:           | 65.8              | 64             | .0           | 60.8     |          | 56.2                 |          | 64.8        | 3        | 65.2    |
| Centerline Distant       | ce to Noise Con   | tour (in feet) |              |          |          |                      |          |             |          |         |
|                          |                   |                | 70           | dBA      | 65 0     | dBA                  | 6        | 60 dBA      | 55       | dBA     |
|                          |                   | La             | <i>ln:</i> 6 | 5        | 14       | 11                   |          | 303         | 6        | 53      |
|                          |                   | CNE            | EL: 7        | 0        | 15       | 51                   |          | 325         | 6        | 99      |

Scenario: Future With Project Road Name: Lincoln Bl. Road Segment: s/o Marina Expy.

#### Project Name: Thatcher Job Number: 12185

| Road Gegine                                     |                   | Чу.            |              |          |          |                   |          |              |          |         |
|-------------------------------------------------|-------------------|----------------|--------------|----------|----------|-------------------|----------|--------------|----------|---------|
| SITE                                            | SPECIFIC INP      | UT DATA        |              |          | ľ        | NOISE I           | NODE     |              | S        |         |
| Highway Data                                    |                   |                |              | Site Con | ditions  | (Hard =           | 10, So   | oft = 15)    |          |         |
| Average Daily                                   | Traffic (Adt): 36 | ,600 vehicles  |              |          |          |                   | Autos:   | 15           |          |         |
| Peak Hour                                       | Percentage:       | 10%            |              | Me       | dium Tr  | rucks (2 J        | Axles):  | 15           |          |         |
| Peak F                                          | lour Volume: 3    | ,660 vehicles  |              | He       | avy Tru  | icks (3+ )        | Axles):  | 15           |          |         |
| Ve                                              | hicle Speed:      | 40 mph         | -            | Vehicle  | Mix      |                   |          |              |          |         |
| Near/Far La                                     | ne Distance:      | 82 feet        | -            | Veh      | icleType | Э                 | Day      | Evening      | Night    | Daily   |
| Site Data                                       |                   |                |              |          |          | Autos:            | 77.5%    | 12.9%        | 9.6%     | 97.42%  |
| Ba                                              | rrier Height:     | 0.0 feet       |              | M        | ədium T  | rucks:            | 84.8%    | 4.9%         | 10.3%    | 1.84%   |
| Barrier Type (0-W                               | /all, 1-Berm):    | 0.0            |              | ŀ        | leavy T  | rucks:            | 86.5%    | 2.7%         | 10.8%    | 0.74%   |
| Centerline Di                                   | st. to Barrier:   | 136.0 feet     | -            | Noise So | ource E  | levation          | s (in fe | eet)         |          |         |
| Centerline Dist.                                | to Observer:      | 146.0 feet     | -            |          | Auto     | ns: 0             | 000      | ,            |          |         |
| Barrier Distance                                | to Observer:      | 10.0 feet      |              | Mediu    | m Truck  | (s <sup>.</sup> 2 | 297      |              |          |         |
| Observer Height                                 | (Above Pad):      | 5.0 feet       |              | Heav     | w Truck  | (s. 2.<br>(s. 8   | 006      | Grade Ad     | iustment | : 0.0   |
| P                                               | ad Elevation:     | 0.0 feet       | -            | nour     | y maon   |                   | 000      | ,            |          |         |
| Ro                                              | ad Elevation:     | 0.0 feet       | -            | Lane Eq  | uivalen  | t Distan          | ce (in   | feet)        |          |         |
| Road Grade: 0.0% Autos                          |                   |                |              |          |          | os: 140.          | 214      |              |          |         |
| Left View: -90.0 degrees Medium Trucks: 140.151 |                   |                |              |          |          |                   |          |              |          |         |
|                                                 | Right View:       | 90.0 degrees   |              | Heav     | y Truck  | (s: 140.          | 157      |              |          |         |
| FHWA Noise Mod                                  | el Calculations   |                |              |          |          |                   |          |              |          |         |
| VehicleType                                     | REMEL 7           | Traffic Flow   | Distance     | Finite   | Road     | Fresi             | nel      | Barrier Atte | en Ber   | m Atten |
| Autos:                                          | 66.51             | 4.20           | -6.8         | 32       | -1.20    |                   | -1.07    | 0.0          | 000      | 0.000   |
| Medium Trucks:                                  | 77.72             | -13.04         | -6.8         | 32       | -1.20    |                   | -1.15    | 0.0          | 000      | 0.000   |
| Heavy Trucks:                                   | 82.99             | -17.00         | -6.8         | 32       | -1.20    |                   | -1.35    | 0.0          | 000      | 0.000   |
| Unmitigated Nois                                | e Levels (withou  | It Topo and b  | arrier attei | nuation) |          |                   |          |              |          |         |
| VehicleType                                     | Leq Peak Hour     | Leq Day        | Leq E        | vening   | Leq      | Night             |          | Ldn          | C        | NEL     |
| Autos:                                          | 62.7              | 60             | ).8          | 59.0     |          | 53.0              | )        | 61.6         | 5        | 62.2    |
| Medium Trucks:                                  | 56.7              | 55             | 5.1          | 48.8     |          | 47.2              | 2        | 55.7         | 7        | 55.9    |
| Heavy Trucks:                                   | 58.0              | 56             | 6.6          | 47.5     |          | 48.8              | 3        | 57.1         |          | 57.3    |
| Vehicle Noise:                                  | 64.7              | 63             | 3.0          | 59.7     |          | 55.               | 1        | 63.7         | 7        | 64.1    |
| Centerline Distan                               | ce to Noise Con   | tour (in feet) |              |          |          |                   |          |              |          |         |
|                                                 |                   |                | 70           | dBA      | 65       | dBA               | 6        | 60 dBA       | 55       | dBA     |
|                                                 |                   | Lo             | dn: t        | 55       | 1        | 19                | ÷        | 257          | 5        | 53      |
|                                                 |                   | CNE            | EL: E        | 59       | 1        | 27                |          | 275          | 5        | 92      |
|                                                 |                   |                |              |          |          |                   |          |              |          |         |

Scenario: Future With Project Road Name: W. Washington Bl. Road Segment: w/o Lincoln Bl.

#### Project Name: Thatcher Job Number: 12185

| SITE SPECIFIC I                                 | NPUT DATA         |              | NOISE MODEL INPUTS |            |           |              |          |         |  |
|-------------------------------------------------|-------------------|--------------|--------------------|------------|-----------|--------------|----------|---------|--|
| Highway Data                                    |                   |              | Site Conditio      | ns (Hard = | = 10, So  | oft = 15)    |          |         |  |
| Average Daily Traffic (Adt):                    | 25,200 vehicles   |              |                    |            | Autos:    | 15           |          |         |  |
| Peak Hour Percentage:                           | 10%               |              | Medium             | Trucks (2  | Axles):   | 15           |          |         |  |
| Peak Hour Volume:                               | 2,520 vehicles    |              | Heavy T            | rucks (3+  | Axles):   | 15           |          |         |  |
| Vehicle Speed:                                  | 35 mph            |              | Vehicle Mix        |            |           |              |          |         |  |
| Near/Far Lane Distance:                         | 46 feet           |              | VehicleTy          | /pe        | Day       | Evening      | Night    | Daily   |  |
| Site Data                                       |                   |              |                    | Autos:     | 77.5%     | 12.9%        | 9.6%     | 97.42%  |  |
| Barrier Height:                                 | 0.0 feet          |              | Medium             | Trucks:    | 84.8%     | 4.9%         | 10.3%    | 1.84%   |  |
| Barrier Type (0-Wall, 1-Berm):                  | 0.0               |              | Heavy              | r Trucks:  | 86.5%     | 2.7%         | 10.8%    | 0.74%   |  |
| Centerline Dist. to Barrier:                    | 110.0 feet        |              | Noise Source       | Elevatio   | ns (in fe | eet)         |          |         |  |
| Centerline Dist. to Observer:                   | 120.0 feet        |              | Au                 | itos: 0    | .000      | ,            |          |         |  |
| Barrier Distance to Observer:                   | 10.0 feet         |              | Medium Tru         | cks: 2     | .297      |              |          |         |  |
| Observer Height (Above Pad):                    | 5.0 feet          |              | Heavy Tru          | cks: 8     | .006      | Grade Adj    | ustment: | 0.0     |  |
| Pad Elevation:                                  | 0.0 feet          |              | · _ · ·            |            |           | • • •        |          |         |  |
| Road Elevation:                                 | 0.0 feet          |              | Lane Equival       | ent Distar | nce (in   | feet)        |          |         |  |
| Road Grade: 0.0% Autos: 117.881                 |                   |              |                    |            |           |              |          |         |  |
| Left View: -90.0 degrees Medium Trucks: 117.806 |                   |              |                    |            |           |              |          |         |  |
| Right View:                                     | 90.0 degrees      | 6            | Heavy Tru          | cks: 117   | .814      |              |          |         |  |
| FHWA Noise Model Calculatio                     | ns                |              |                    |            |           |              |          |         |  |
| VehicleType REMEL                               | Traffic Flow      | Distance     | Finite Road        | l Fres     | nel       | Barrier Atte | en Ber   | m Atten |  |
| Autos: 64.3                                     | 0 3.15            | -5.69        | 9 -1.2             | 20         | -1.05     | 0.0          | 00       | 0.000   |  |
| Medium Trucks: 75.7                             | 5 -14.08          | -5.69        | 9 -1.2             | 20         | -1.15     | 0.0          | 00       | 0.000   |  |
| Heavy Trucks: 81.5                              | 7 -18.04          | -5.69        | 9 -1.2             | 20         | -1.40     | 0.0          | 00       | 0.000   |  |
| Unmitigated Noise Levels (wit                   | hout Topo and b   | arrier atten | uation)            |            |           |              |          |         |  |
| VehicleType Leq Peak He                         | our Leq Day       | Leq E        | vening L           | əq Night   |           | Ldn          | Cl       | VEL     |  |
| Autos: 6                                        | 60.6 58           | 8.7          | 56.9               | 50.        | 8         | 59.5         | i        | 60.1    |  |
| Medium Trucks: 5                                | 54.8 53           | 3.3          | 46.9               | 45.        | 4         | 53.8         | ;        | 54.1    |  |
| Heavy Trucks: 5                                 | 6.6 55            | 5.2          | 46.2               | 47.        | 4         | 55.8         | •        | 55.9    |  |
| Vehicle Noise: 6                                | 6 <sup>°</sup>    | 1.1          | 57.6               | 53.        | 2         | 61.8         | }        | 62.2    |  |
| Centerline Distance to Noise                    | Contour (in feet) |              |                    |            |           |              |          |         |  |
|                                                 |                   | 70 0         | dBA (              | 65 dBA     | 6         | 60 dBA       | 55       | dBA     |  |
|                                                 | Lo                | dn: 3        | 4                  | 73         |           | 158          | 3        | 40      |  |
|                                                 | CNE               | EL: 3        | 6                  | 78         |           | 168          | 3        | 63      |  |

Friday, February 01, 2019

Scenario: Future With Project Road Name: W. Washington Bl. Road Segment: e/o Lincoln Bl.

#### Project Name: Thatcher Job Number: 12185

| . tead obgino     |                   | 1.             |              |                             |           |           |          |             |          |         |
|-------------------|-------------------|----------------|--------------|-----------------------------|-----------|-----------|----------|-------------|----------|---------|
| SITE              | SPECIFIC INP      | UT DATA        |              | NOISE MODEL INPUTS          |           |           |          |             |          |         |
| Highway Data      |                   |                |              | Site Con                    | ditions ( | Hard = 1  | 10, Sc   | oft = 15)   |          |         |
| Average Daily     | Traffic (Adt): 24 | ,100 vehicles  |              |                             |           | A         | utos:    | 15          |          |         |
| Peak Hour         | · Percentage:     | 10%            |              | Medium Trucks (2 Axles): 15 |           |           |          |             |          |         |
| Peak H            | lour Volume: 2    | ,410 vehicles  |              | He                          | avy Trucl | ks (3+ A) | xles):   | 15          |          |         |
| Ve                | hicle Speed:      | 35 mph         | _            | Vehicle                     | Mix       |           |          |             |          |         |
| Near/Far La       | ne Distance:      | 46 feet        | -            | Veh                         | icleType  | Ĺ         | Day      | Evening     | Night    | Daily   |
| Site Data         |                   |                |              |                             | A         | utos: 7   | 7.5%     | 12.9%       | 9.6%     | 97.42%  |
| Ba                | rrier Height:     | 0.0 feet       |              | M                           | ədium Tru | icks: 8   | 84.8%    | 4.9%        | 10.3%    | 1.84%   |
| Barrier Type (0-V | Vall, 1-Berm):    | 0.0            |              | I                           | leavy Tru | icks: 8   | 86.5%    | 2.7%        | 10.8%    | 0.74%   |
| Centerline Di     | ist. to Barrier:  | 110.0 feet     | -            | Noise Su                    | ource Ele | vations   | (in fe   | et)         |          |         |
| Centerline Dist.  | to Observer:      | 120.0 feet     | _            | 110/30 00                   |           |           | 00       |             |          |         |
| Barrier Distance  | to Observer:      | 10.0 feet      |              | Modiu                       | n Trucks  | · 2.0     | 00<br>07 |             |          |         |
| Observer Height   | (Above Pad):      | 5.0 feet       |              | Hoa                         | n Trucks  | 8.0       | 06       | Grade Ad    | iustment | · 0.0   |
| P                 | ad Elevation:     | 0.0 feet       | _            | near                        | y muchs.  | 0.0       | 00       |             | dotinoni | . 0.0   |
| Ro                | ad Elevation:     | 0.0 feet       | _            | Lane Eq                     | uivalent  | Distanc   | e (in t  | feet)       |          |         |
|                   |                   |                | Autos.       | 117.8                       | 81        |           |          |             |          |         |
|                   | Left View:        | -90.0 degrees  |              | Mediu                       | m Trucks. | 117.8     | 06       |             |          |         |
|                   | Right View:       | 90.0 degrees   |              | Heav                        | y Trucks  | 117.8     | 14       |             |          |         |
| FHWA Noise Mod    | lel Calculations  |                |              |                             |           |           |          |             |          |         |
| VehicleType       | REMEL             | Traffic Flow   | Distance     | Finite                      | Road      | Fresne    | e/       | Barrier Att | en Ber   | m Atten |
| Autos:            | 64.30             | 2.96           | -5.6         | 69                          | -1.20     | -         | 1.05     | 0.0         | 000      | 0.000   |
| Medium Trucks:    | 75.75             | -14.28         | -5.6         | 9                           | -1.20     | -         | 1.15     | 0.0         | 000      | 0.000   |
| Heavy Trucks:     | 81.57             | -18.23         | -5.6         | 69                          | -1.20     | -         | 1.40     | 0.0         | 000      | 0.000   |
| Unmitigated Nois  | e Levels (withou  | It Topo and ba | arrier atter | nuation)                    |           |           |          |             |          |         |
| VehicleType       | Leq Peak Hour     | Leq Day        | Leq E        | vening                      | Leq N     | light     |          | Ldn         | С        | NEL     |
| Autos:            | 60.4              | 58             | .5           | 56.7                        |           | 50.7      |          | 59.3        | 3        | 59.9    |
| Medium Trucks:    | 54.6              | 53             | .1           | 46.7                        |           | 45.2      |          | 53.6        | 6        | 53.9    |
| Heavy Trucks:     | 56.4              | 55             | .0           | 46.0                        |           | 47.2      |          | 55.6        | 6        | 55.7    |
| Vehicle Noise:    | 62.6              | 60             | .9           | 57.4                        |           | 53.1      |          | 61.6        | 6        | 62.0    |
| Centerline Distan | ce to Noise Con   | tour (in feet) |              |                             |           |           |          |             |          |         |
|                   |                   |                | 70           | dBA                         | 65 d      | BA        | 6        | 0 dBA       | 55       | dBA     |
|                   |                   | La             | In: 3        | 33                          | 71        |           |          | 153         | 3        | 30      |
|                   |                   | CNE            | :L: 3        | 35                          | 76        | ;         |          | 163         | 3        | 352     |
|                   |                   |                |              |                             |           |           |          |             |          |         |

Friday, February 01, 2019

Scenario: Future With Project Road Name: Jefferson Wy. Road Segment: w/o Lincoln Bl.

#### Project Name: Thatcher Job Number: 12185

| Roud Cognic                                    |                  | ···              |           |                    |                  |           |          |             |          |         |
|------------------------------------------------|------------------|------------------|-----------|--------------------|------------------|-----------|----------|-------------|----------|---------|
| SITE                                           | SPECIFIC INP     | UT DATA          |           | NOISE MODEL INPUTS |                  |           |          |             |          |         |
| Highway Data                                   |                  |                  |           | Site Con           | ditions          | (Hard =   | : 10, So | oft = 15)   |          |         |
| Average Daily                                  | Traffic (Adt): 2 | ,300 vehicles    |           |                    |                  |           | Autos:   | 15          |          |         |
| Peak Hour                                      | Percentage:      | 10%              |           | Me                 | dium Tri         | ucks (2   | Axles):  | 15          |          |         |
| Peak H                                         | lour Volume:     | 230 vehicles     |           | He                 | avy Truc         | cks (3+ . | Axles):  | 15          |          |         |
| Ve                                             | hicle Speed:     | 25 mph           | -         | Vehicle            | Mix              |           |          |             |          |         |
| Near/Far La                                    | ne Distance:     | 12 feet          |           | Veh                | icleType         | )         | Day      | Evening     | Night    | Daily   |
| Site Data                                      |                  |                  |           |                    | ŀ                | Autos:    | 77.5%    | 12.9%       | 9.6%     | 97.42%  |
| Ba                                             | rrier Heiaht:    | 0.0 feet         |           | Me                 | ədium Ti         | rucks:    | 84.8%    | 4.9%        | 10.3%    | 1.84%   |
| Barrier Type (0-V                              | /all, 1-Berm):   | 0.0              |           | ŀ                  | leavy Ti         | rucks:    | 86.5%    | 2.7%        | 10.8%    | 0.74%   |
| Centerline Di                                  | st. to Barrier:  | 60.0 feet        | _         | Naisa Sa           |                  | lovation  | c (in f  | oot)        |          |         |
| Centerline Dist.                               | to Observer:     | 70.0 feet        | ,         | 10/38 30           |                  |           |          | eel)        |          |         |
| Barrier Distance                               | to Observer:     | 10.0 feet        |           | Modiu              | AUIO:<br>m Truck | S. U.     | 207      |             |          |         |
| Observer Height                                | (Above Pad):     | 5.0 feet         |           | Mediui             |                  | S. Z.     | 297      | Grada Ad    | iustmont | . 0 0   |
| P                                              | ad Elevation:    | 0.0 feet         |           | пеач               | y TTUCK          | s. o.     | 000      | Orace Auj   | usiment  | . 0.0   |
| Ro                                             | ad Elevation:    | 0.0 feet         | I         | Lane Eq            | uivalent         | t Distan  | ce (in   | feet)       |          |         |
|                                                |                  |                  | Auto      | s: 69              | 921              |           |          |             |          |         |
| Left View: -90.0 degrees Medium Trucks: 69.795 |                  |                  |           |                    |                  |           |          |             |          |         |
|                                                | Right View:      | 90.0 degrees     |           | Heav               | y Truck          | s: 69     | 807      |             |          |         |
| EHWA Noise Mod                                 | lel Calculations |                  |           |                    |                  |           |          |             |          |         |
| VehicleType                                    | RFMFI            | Traffic Flow D   | istance   | Finite             | Road             | Fres      | nel      | Barrier Att | en Bei   | m Atten |
| Autos:                                         | 58.73            | -5.78            | -2.29     | 9                  | -1.20            | 1100      | -0.98    | 0.0         | 000      | 0.000   |
| Medium Trucks:                                 | 70.80            | -23.02           | -2.28     | 3                  | -1.20            |           | -1.15    | 0.0         | 000      | 0.000   |
| Heavy Trucks:                                  | 77.97            | -26.98           | -2.28     | 3                  | -1.20            |           | -1.61    | 0.0         | 000      | 0.000   |
| Unmitigated Nois                               | e Levels (withou | It Topo and barr | ier atten | uation)            |                  |           |          |             |          |         |
| VehicleType                                    | Leg Peak Hour    | Leq Day          | Leg Ev    | vening             | Leq              | Night     |          | Ldn         | C        | NEL     |
| Autos:                                         | 49.5             | 47.6             |           | 45.8               |                  | 39.       | 7        | 48.4        | ŀ        | 49.0    |
| Medium Trucks:                                 | 44.3             | 42.8             |           | 36.4               |                  | 34.       | 9        | 43.3        | 3        | 43.6    |
| Heavy Trucks:                                  | 47.5             | 46.1             |           | 37.1               |                  | 38.       | 3        | 46.7        | 7        | 46.8    |
| Vehicle Noise:                                 | 52.4             | 50.7             |           | 46.8               |                  | 42.       | 9        | 51.4        | 1        | 51.7    |
| Centerline Distan                              | ce to Noise Con  | tour (in feet)   |           |                    |                  |           |          |             |          |         |
| L                                              |                  |                  | 70 c      | dBA                | 65               | dBA       | e        | 60 dBA      | 55       | dBA     |
|                                                |                  | Ldn:             | 4         | ŀ                  | 9                | 9         |          | 19          |          | 40      |
|                                                |                  | CNEL:            | 4         | Ļ                  | 9                | 9         |          | 20          |          | 42      |
|                                                |                  |                  |           |                    |                  |           |          |             |          |         |

Scenario: Future With Project Road Name: Maxella Av. Road Segment: e/o Lincoln Bl.

#### Project Name: Thatcher Job Number: 12185

| Road Segme               | III. E/O LINCOIN BI | l              |        |         |                    |             |                  |          |              |          |         |
|--------------------------|---------------------|----------------|--------|---------|--------------------|-------------|------------------|----------|--------------|----------|---------|
| SITE                     | SPECIFIC INP        | UT DATA        |        |         | NOISE MODEL INPUTS |             |                  |          |              |          |         |
| Highway Data             |                     |                |        | S       | Site Cond          | itions      | (Hard =          | 10, Sc   | oft = 15)    |          |         |
| Average Daily            | Traffic (Adt): 11   | ,900 vehicles  | 5      |         |                    |             |                  | Autos:   | 15           |          |         |
| Peak Hour                | Percentage:         | 10%            |        |         | Medi               | um Tru      | ıcks (2 /        | Axles):  | 15           |          |         |
| Peak F                   | lour Volume: 1      | ,190 vehicles  | ;      |         | Hear               | /y Truc     | :ks (3+ /        | Axles):  | 15           |          |         |
| Ve                       | hicle Speed:        | 40 mph         |        | 1       | /ehicle M          | i <b>y</b>  |                  |          |              |          |         |
| Near/Far La              | ne Distance:        | 40 feet        |        | -       | Vehic              | л<br>leType |                  | Day      | Evening      | Night    | Daily   |
| Site Data                |                     |                |        |         |                    | A           | Autos:           | 77.5%    | 12.9%        | 9.6%     | 97.42%  |
| Ba                       | rrier Height:       | 0.0 feet       |        |         | Mec                | lium Tı     | ucks:            | 84.8%    | 4.9%         | 10.3%    | 1.84%   |
| Barrier Type (0-W        | /all, 1-Berm):      | 0.0            |        |         | He                 | avy Tı      | ucks:            | 86.5%    | 2.7%         | 10.8%    | 0.74%   |
| Centerline Di            | st. to Barrier:     | 100.0 feet     |        | ^       | Noise Sou          | rce El      | evation          | s (in fe | et)          |          |         |
| Centerline Dist.         | to Observer:        | 110.0 feet     |        | -       |                    |             | s <sup>.</sup> 0 | 000      | ,            |          |         |
| Barrier Distance         | to Observer:        | 10.0 feet      |        |         | Medium             | Trucks      | s. 0.            | 297      |              |          |         |
| Observer Height          | (Above Pad):        | 5.0 feet       |        |         | Heavy              | Trucks      | s: 8.            | 006      | Grade Ad     | iustment | : 0.0   |
| P                        | ad Elevation:       | 0.0 feet       |        |         |                    |             |                  |          | ,            |          |         |
| Ro                       | ad Elevation:       | 0.0 feet       |        | L       | .ane Equi          | valent      | Distan           | ce (in i | feet)        |          |         |
| Road Grade: 0.0%         |                     |                |        |         |                    | Autos       | s: 108.          | 282      |              |          |         |
| Left View: -90.0 degrees |                     |                |        |         | Medium             | Trucks      | s: 108.          | 200      |              |          |         |
|                          | Right View:         | 90.0 degree    | S      |         | Heavy              | Trucks      | s: 108.          | 208      |              |          |         |
| FHWA Noise Mod           | el Calculations     |                |        |         |                    |             |                  |          |              |          |         |
| VehicleType              | REMEL 1             | Traffic Flow   | Dist   | tance   | Finite R           | oad         | Fresr            | nel      | Barrier Atte | en Ber   | m Atten |
| Autos:                   | 66.51               | -0.68          |        | -5.14   | ŀ                  | -1.20       |                  | -1.04    | 0.0          | 000      | 0.000   |
| Medium Trucks:           | 77.72               | -17.92         |        | -5.13   | 3                  | -1.20       |                  | -1.15    | 0.0          | 000      | 0.000   |
| Heavy Trucks:            | 82.99               | -21.88         |        | -5.13   | 3                  | -1.20       |                  | -1.43    | 0.0          | 000      | 0.000   |
| Unmitigated Nois         | e Levels (withou    | It Topo and I  | barrie | r atten | uation)            |             |                  |          |              |          |         |
| VehicleType              | Leq Peak Hour       | Leq Day        |        | Leq Ev  | vening             | Leq         | Night            |          | Ldn          | C        | NEL     |
| Autos:                   | 59.5                | Ę              | 57.6   |         | 55.8               |             | 49.8             | 3        | 58.4         | 1        | 59.0    |
| Medium Trucks:           | 53.5                | Ę              | 52.0   |         | 45.6               |             | 44.0             | )        | 52.5         | 5        | 52.7    |
| Heavy Trucks:            | 54.8                | Ę              | 53.4   |         | 44.3               |             | 45.6             | 6        | 53.9         | 9        | 54.1    |
| Vehicle Noise:           | 61.5                | Ę              | 59.8   |         | 56.5               |             | 51.9             | )        | 60.5         | 5        | 60.9    |
| Centerline Distan        | ce to Noise Con     | tour (in feet) |        |         |                    |             |                  | - 1      |              |          |         |
|                          |                     |                |        | 70 a    | IBA                | 65          | dBA              | 6        | 60 dBA       | 55       | dBA     |
|                          |                     | l              | _dn:   | 25      | 5                  | 5           | 5                |          | 118          | 2        | 255     |
|                          |                     | CN             | IEL:   | 27      | 7                  | 5           | 9                |          | 127          | 2        | .73     |

Friday, February 01, 2019

Scenario: Future With Project Road Name: Marina Expy. Road Segment: e/o Lincoln Bl.

#### Project Name: Thatcher Job Number: 12185

| Roud Cognic                                     |                   | ···              |            |                    |          |                           |          |             |          |         |
|-------------------------------------------------|-------------------|------------------|------------|--------------------|----------|---------------------------|----------|-------------|----------|---------|
| SITE                                            | SPECIFIC INP      | UT DATA          |            | NOISE MODEL INPUTS |          |                           |          |             |          |         |
| Highway Data                                    |                   |                  | 5          | Site Con           | ditions  | (Hard =                   | : 10, So | oft = 15)   |          |         |
| Average Daily                                   | Traffic (Adt): 23 | ,700 vehicles    |            |                    |          |                           | Autos:   | 15          |          |         |
| Peak Hour                                       | Percentage:       | 10%              |            | Me                 | dium Tri | ucks (2 /                 | Axles):  | 15          |          |         |
| Peak H                                          | lour Volume: 2    | ,370 vehicles    |            | He                 | avy Tru  | cks (3+ )                 | Axles):  | 15          |          |         |
| Ve                                              | hicle Speed:      | 40 mph           | ١          | /ehicle            | Mix      |                           |          |             |          |         |
| Near/Far La                                     | ne Distance:      | 80 feet          |            | Veh                | icleType | )                         | Day      | Evening     | Night    | Daily   |
| Site Data                                       |                   |                  |            |                    | /        | Autos:                    | 77.5%    | 12.9%       | 9.6%     | 97.42%  |
| Ba                                              | rrier Height:     | 0.0 feet         |            | Me                 | edium Ti | rucks:                    | 84.8%    | 4.9%        | 10.3%    | 1.84%   |
| Barrier Type (0-V                               | /all, 1-Berm):    | 0.0              |            | ŀ                  | leavy T  | rucks:                    | 86.5%    | 2.7%        | 10.8%    | 0.74%   |
| Centerline Di                                   | st. to Barrier:   | 104.0 feet       |            | Noiso Sa           |          | lovation                  | s (in f  | aat)        |          |         |
| Centerline Dist.                                | to Observer:      | 114.0 feet       | -          | 10/36 30           |          |                           | 000      |             |          |         |
| Barrier Distance                                | to Observer:      | 10.0 feet        |            | Madiu              | m Truck  | s. 0.<br>s <sup>.</sup> 2 | 297      |             |          |         |
| Observer Height                                 | (Above Pad):      | 5.0 feet         |            | Heav               | N Truck  | s. 2.<br>s <sup>.</sup> 8 | 006      | Grade Ad    | iustment | · 0.0   |
| P                                               | ad Elevation:     | 0.0 feet         |            | neav               | y much   | 3. 0.                     | 000      | Crado riaj  | dotmont  | . 0.0   |
| Ro                                              | ad Elevation:     | 0.0 feet         | L          | .ane Eq            | uivalen  | t Distan                  | ce (in   | feet)       |          |         |
|                                                 | Road Grade:       | 0.0%             |            |                    | Auto     | s: 106.                   | 869      |             |          |         |
| Left View: -90.0 degrees Medium Trucks: 106.786 |                   |                  |            |                    |          |                           |          |             |          |         |
|                                                 | Right View:       | 90.0 degrees     |            | Heav               | y Truck  | s: 106.                   | 794      |             |          |         |
| FHWA Noise Mod                                  | el Calculations   |                  |            |                    |          |                           |          |             |          |         |
| VehicleType                                     | REMEL             | Traffic Flow D   | istance    | Finite             | Road     | Fresi                     | nel      | Barrier Att | en Ber   | m Atten |
| Autos:                                          | 66.51             | 2.31             | -5.05      | 5                  | -1.20    |                           | -1.05    | 0.0         | 000      | 0.000   |
| Medium Trucks:                                  | 77.72             | -14.93           | -5.05      | 5                  | -1.20    |                           | -1.15    | 0.0         | 000      | 0.000   |
| Heavy Trucks:                                   | 82.99             | -18.89           | -5.05      | 5                  | -1.20    |                           | -1.42    | 0.0         | 000      | 0.000   |
| Unmitigated Nois                                | e Levels (withou  | ut Topo and barr | rier atten | uation)            |          |                           |          |             |          |         |
| VehicleType                                     | Leq Peak Hour     | Leq Day          | Leq Ev     | <i>ening</i>       | Leq      | Night                     |          | Ldn         | C        | NEL     |
| Autos:                                          | 62.6              | 60.7             |            | 58.9               |          | 52.8                      | 3        | 61.5        | 5        | 62.1    |
| Medium Trucks:                                  | 56.5              | 55.0             |            | 48.7               |          | 47.1                      | 1        | 55.6        | 6        | 55.8    |
| Heavy Trucks:                                   | 57.9              | 56.4             |            | 47.4               |          | 48.7                      | 7        | 57.0        | )        | 57.1    |
| Vehicle Noise:                                  | 64.6              | 62.8             |            | 59.6               |          | 55.0                      | )        | 63.6        | 6        | 64.0    |
| Centerline Distan                               | ce to Noise Con   | tour (in feet)   |            |                    |          |                           |          |             |          |         |
|                                                 |                   |                  | 70 a       | IBA                | 65       | dBA                       | e        | 60 dBA      | 55       | dBA     |
|                                                 |                   | Ldn:             | 42         | 2                  | ç        | 91                        |          | 197         | 4        | 24      |
|                                                 |                   | CNEL:            | 45         | 5                  | g        | 98                        |          | 211         | 4        | 54      |
|                                                 |                   |                  |            |                    |          |                           |          |             |          |         |

APPENDIX 10.1:

**OPERATIONAL NOISE CALCULATIONS** 

This page intentionally left blank



**Observer Location:** R1

*Source:* Mechanical Ventilation Equipment *Condition:* Operational

Project Name: Thatcher Job Number: 12185 Analyst: A. Wolfe

|                               | NOISE MODEL INPUTS |                                                        |                              |  |  |  |  |  |  |  |  |
|-------------------------------|--------------------|--------------------------------------------------------|------------------------------|--|--|--|--|--|--|--|--|
| Noise Distance to Observer    | 193.0 feet         | Barrier Height:                                        | 6.0 feet                     |  |  |  |  |  |  |  |  |
| Noise Distance to Barrier:    | 183.0 feet         | Noise Source Height:                                   | 5.0 feet                     |  |  |  |  |  |  |  |  |
| Barrier Distance to Observer: | 10.0 feet          | Observer Height:                                       | 5.0 feet                     |  |  |  |  |  |  |  |  |
| Observer Elevation:           | 0.0 feet           | Barrier Type (0-Wall, 1-Berm):                         | 0                            |  |  |  |  |  |  |  |  |
| Noise Source Elevation:       | 20.0 feet          | Drop Off Coefficient:                                  | 20.0                         |  |  |  |  |  |  |  |  |
| Barrier Elevation:            | 0.0 feet           | 20 = 6 dBA per doubling o<br>15 = 4.5 dBA per doubling | of distance<br>g of distance |  |  |  |  |  |  |  |  |

|                                 | NOISE           | MODEL P | ROJECTIO | ONS   |       |       |       |
|---------------------------------|-----------------|---------|----------|-------|-------|-------|-------|
| Noise Level                     | Distance (feet) | Leq     | L50      | L25   | L8    | L2    | Lmax  |
| Reference (Sample)              | 5.0             | 77.2    | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   |
| Distance Attenuation            | 193.0           | -31.7   | -31.7    | -31.7 | -31.7 | -31.7 | -31.7 |
| Shielding (Barrier Attenuation) | 183.0           | -4.9    | -4.9     | -4.9  | -4.9  | -4.9  | -4.9  |
| Raw (Distance + Barrier)        |                 | 40.6    | -36.6    | -36.6 | -36.6 | -36.6 | -36.6 |
| 60 Minute Hourly Adjustme       | nt              | 40.6    | -36.6    | -36.6 | -36.6 | -36.6 | -36.6 |

| S                                                                         | STATIONARY SOURCE NOISE PREDICTION MODEL 1/31/2019 |                                                                  |                              |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------|------------------------------|--|--|--|--|--|--|--|
| <b>Observer Location: R1</b><br>Source: Trash End<br>Condition: Operation | closure Activity<br>al                             | Project Name: Thatcher<br>Job Number: 12185<br>Analyst: A. Wolfe |                              |  |  |  |  |  |  |  |
|                                                                           | NC                                                 | DISE MODEL INPUTS                                                |                              |  |  |  |  |  |  |  |
| Noise Distance to Observer                                                | 650.0 feet                                         | Barrier Height:                                                  | 40.0 feet                    |  |  |  |  |  |  |  |
| Noise Distance to Barrier:<br>Barrier Distance to Observer:               | 30.0 feet<br>620.0 feet                            | Observer Height:                                                 | 5.0 feet                     |  |  |  |  |  |  |  |
| Observer Elevation:<br>Noise Source Elevation:                            | 0.0 feet<br>0.0 feet                               | Barrier Type (0-Wall, 1-Berm):<br>Drop Off Coefficient:          | 0<br>20.0                    |  |  |  |  |  |  |  |
| Barrier Elevation:                                                        | 0.0 feet                                           | 20 = 6 dBA per doubling<br>15 = 4.5 dBA per doubling             | of distance<br>g of distance |  |  |  |  |  |  |  |

|                                 | NOIS            | E MODEL F | PROJECTI | ONS   |       |       |       |
|---------------------------------|-----------------|-----------|----------|-------|-------|-------|-------|
| Noise Level                     | Distance (feet) | Leq       | L50      | L25   | L8    | L2    | Lmax  |
| Reference (Sample)              | 5.0             | 77.3      | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   |
| Distance Attenuation            | 650.0           | -42.3     | -42.3    | -42.3 | -42.3 | -42.3 | -42.3 |
| Shielding (Barrier Attenuation) | 30.0            | -17.9     | -17.9    | -17.9 | -17.9 | -17.9 | -17.9 |
| Raw (Distance + Barrier)        |                 | 17.1      | -60.2    | -60.2 | -60.2 | -60.2 | -60.2 |
| 60 Minute Hourly Adjustmen      | it              | 17.1      | -60.2    | -60.2 | -60.2 | -60.2 | -60.2 |

1/31/2019

 Observer Location: R1
 Project

 Source: Pad-Mounted Transformer
 Job Na

 Condition: Operational
 A

 Noise Distance to Observer
 633.0 feet

Noise Distance to Barrier:15.0 feetBarrier Distance to Observer:618.0 feetObserver Elevation:0.0 feetNoise Source Elevation:0.0 feetBarrier Elevation:0.0 feet

Project Name: Thatcher Job Number: 12185 Analyst: A. Wolfe

Barrier Height:40.0 feetNoise Source Height:5.0 feetObserver Height:5.0 feetBarrier Type (0-Wall, 1-Berm):0Drop Off Coefficient:20.020 = 6 dBA per doubling of distance

15 = 4.5 dBA per doubling of distance

|                                 | NOIS            | E MODEL F | PROJECTI | ONS   |       |       |       |
|---------------------------------|-----------------|-----------|----------|-------|-------|-------|-------|
| Noise Level                     | Distance (feet) | Leq       | L50      | L25   | L8    | L2    | Lmax  |
| Reference (Sample)              | 6.0             | 56.0      | 0.0      | 0.0   | 0.0   | 0.0   | 0.0   |
| Distance Attenuation            | 633.0           | -40.5     | -40.5    | -40.5 | -40.5 | -40.5 | -40.5 |
| Shielding (Barrier Attenuation) | 15.0            | -18.5     | -18.5    | -18.5 | -18.5 | -18.5 | -18.5 |
| Raw (Distance + Barrier)        |                 | -3.0      | -59.0    | -59.0 | -59.0 | -59.0 | -59.0 |
| 60 Minute Hourly Adjustmer      | nt              | -3.0      | -59.0    | -59.0 | -59.0 | -59.0 | -59.0 |

| S                                                                                          | TATIONARY SOURC                       | E NOISE PREDICTION MODEL                                                                                        | 1/31/2019                                 |  |  |  |  |
|--------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|--|--|--|
| <b>Observer Location:</b> R1<br>Source: Playground/Park Activity<br>Condition: Operational |                                       | Project Name: Thatcher<br>Job Number: 12185<br>Analyst: A. Wolfe                                                |                                           |  |  |  |  |
|                                                                                            | NOISE MODEL INPUTS                    |                                                                                                                 |                                           |  |  |  |  |
| Noise Distance to Observer<br>Noise Distance to Barrier:<br>Barrier Distance to Observer:  | 233.0 feet<br>223.0 feet<br>10.0 feet | <b>Barrier Height:</b><br>Noise Source Height:<br>Observer Height:                                              | 6.0 feet<br>4.0 feet<br>5.0 feet          |  |  |  |  |
| Observer Elevation:<br>Noise Source Elevation:<br>Barrier Elevation:                       | 0.0 feet<br>0.0 feet<br>0.0 feet      | Barrier Type (0-Wall, 1-Berm):<br>Drop Off Coefficient:<br>20 = 6 dBA per doubling<br>15 = 4.5 dBA per doubling | 0<br>20.0<br>of distance<br>g of distance |  |  |  |  |

| NOISE MODEL PROJECTIONS         |                 |       |       |       |       |       |       |
|---------------------------------|-----------------|-------|-------|-------|-------|-------|-------|
| Noise Level                     | Distance (feet) | Leq   | L50   | L25   | L8    | L2    | Lmax  |
| Reference (Sample)              | 5.0             | 63.4  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| Distance Attenuation            | 233.0           | -33.4 | -33.4 | -33.4 | -33.4 | -33.4 | -33.4 |
| Shielding (Barrier Attenuation) | 223.0           | -5.6  | -5.6  | -5.6  | -5.6  | -5.6  | -5.6  |
| Raw (Distance + Barrier)        |                 | 24.4  | -39.0 | -39.0 | -39.0 | -39.0 | -39.0 |
| 60 Minute Hourly Adjustmer      | nt              | 24.4  | -39.0 | -39.0 | -39.0 | -39.0 | -39.0 |

**Observer Location:** R2

*Source:* Mechanical Ventilation Equipment *Condition:* Operational

Project Name: Thatcher Job Number: 12185 Analyst: A. Wolfe

| NOISE MODEL INPUTS            |            |                                                        |                              |  |  |  |
|-------------------------------|------------|--------------------------------------------------------|------------------------------|--|--|--|
| Noise Distance to Observer    | 140.0 feet | Barrier Height:                                        | 0.0 feet                     |  |  |  |
| Noise Distance to Barrier:    | 140.0 feet | Noise Source Height:                                   | 5.0 feet                     |  |  |  |
| Barrier Distance to Observer: | 0.0 feet   | Observer Height:                                       | 5.0 feet                     |  |  |  |
| Observer Elevation:           | 0.0 feet   | Barrier Type (0-Wall, 1-Berm):                         | 0                            |  |  |  |
| Noise Source Elevation:       | 20.0 feet  | Drop Off Coefficient:                                  | 20.0                         |  |  |  |
| Barrier Elevation:            | 0.0 feet   | 20 = 6 dBA per doubling o<br>15 = 4.5 dBA per doubling | of distance<br>g of distance |  |  |  |

| NOISE MODEL PROJECTIONS         |                 |       |       |       |       |       |       |
|---------------------------------|-----------------|-------|-------|-------|-------|-------|-------|
| Noise Level                     | Distance (feet) | Leq   | L50   | L25   | L8    | L2    | Lmax  |
| Reference (Sample)              | 5.0             | 77.2  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| Distance Attenuation            | 140.0           | -28.9 | -28.9 | -28.9 | -28.9 | -28.9 | -28.9 |
| Shielding (Barrier Attenuation) | 140.0           | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| Raw (Distance + Barrier)        |                 | 48.3  | -28.9 | -28.9 | -28.9 | -28.9 | -28.9 |
| 60 Minute Hourly Adjustmer      | nt              | 48.3  | -28.9 | -28.9 | -28.9 | -28.9 | -28.9 |

| STATIONARY SOURCE NOISE PREDICTION MODEL 1/31/201                                          |                      |                                                                  |                            |  |  |  |  |
|--------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------|----------------------------|--|--|--|--|
| <b>Observer Location: R2</b><br>Source: Trash Enclosure Activity<br>Condition: Operational |                      | Project Name: Thatcher<br>Job Number: 12185<br>Analyst: A. Wolfe |                            |  |  |  |  |
|                                                                                            | NOISE MODEL INPUTS   |                                                                  |                            |  |  |  |  |
| Noise Distance to Observer                                                                 | 459.0 feet           | Barrier Height:                                                  | <b>40.0 feet</b>           |  |  |  |  |
| Barrier Distance to Observer:                                                              | 429.0 feet           | Observer Height:                                                 | 5.0 feet                   |  |  |  |  |
| Observer Elevation:<br>Noise Source Elevation:                                             | 0.0 feet<br>0.0 feet | Barrier Type (0-Wall, 1-Berm):<br>Drop Off Coefficient:          | 0<br>20.0                  |  |  |  |  |
| Barrier Elevation: 0.0 feet                                                                |                      | 20 = 6 dBA per doubling o<br>15 = 4.5 dBA per doubling           | of distance<br>of distance |  |  |  |  |

| NOISE MODEL PROJECTIONS         |                 |       |       |       |       |       |       |
|---------------------------------|-----------------|-------|-------|-------|-------|-------|-------|
| Noise Level                     | Distance (feet) | Leq   | L50   | L25   | L8    | L2    | Lmax  |
| Reference (Sample)              | 5.0             | 77.3  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| Distance Attenuation            | 459.0           | -39.3 | -39.3 | -39.3 | -39.3 | -39.3 | -39.3 |
| Shielding (Barrier Attenuation) | 30.0            | -18.0 | -18.0 | -18.0 | -18.0 | -18.0 | -18.0 |
| Raw (Distance + Barrier)        |                 | 20.0  | -57.3 | -57.3 | -57.3 | -57.3 | -57.3 |
| 60 Minute Hourly Adjustmer      | nt              | 20.0  | -57.3 | -57.3 | -57.3 | -57.3 | -57.3 |

1/31/2019

Observer Location: R2 Source: Pad-Mounted Transformer Condition: Operational

|                               | IN         |
|-------------------------------|------------|
| Noise Distance to Observer    | 442.0 feet |
| Noise Distance to Barrier:    | 15.0 feet  |
| Barrier Distance to Observer: | 427.0 feet |
|                               |            |
| Observer Elevation:           | 0.0 feet   |
| Noise Source Elevation:       | 0.0 feet   |
| Barrier Elevation:            | 0.0 feet   |
|                               |            |

Project Name: Thatcher Job Number: 12185 Analyst: A. Wolfe

| NOISE MODEL INPUTS |                                                                              |           |  |  |  |  |
|--------------------|------------------------------------------------------------------------------|-----------|--|--|--|--|
| t                  | Barrier Height:                                                              | 40.0 feet |  |  |  |  |
| t                  | Noise Source Height:                                                         | 5.0 feet  |  |  |  |  |
| t                  | Observer Height:                                                             | 5.0 feet  |  |  |  |  |
| t                  | Barrier Type (0-Wall, 1-Berm):                                               | 0         |  |  |  |  |
| t                  | Drop Off Coefficient:                                                        | 20.0      |  |  |  |  |
| t                  | 20 = 6 dBA per doubling of distance<br>15 = 4.5 dBA per doubling of distance |           |  |  |  |  |

| NOISE MODEL PROJECTIONS         |                 |       |       |       |       |       |       |
|---------------------------------|-----------------|-------|-------|-------|-------|-------|-------|
| Noise Level                     | Distance (feet) | Leq   | L50   | L25   | L8    | L2    | Lmax  |
| Reference (Sample)              | 6.0             | 56.0  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| Distance Attenuation            | 442.0           | -37.3 | -37.3 | -37.3 | -37.3 | -37.3 | -37.3 |
| Shielding (Barrier Attenuation) | 15.0            | -18.5 | -18.5 | -18.5 | -18.5 | -18.5 | -18.5 |
| Raw (Distance + Barrier)        |                 | 0.2   | -55.8 | -55.8 | -55.8 | -55.8 | -55.8 |
| 60 Minute Hourly Adjustmen      | nt              | 0.2   | -55.8 | -55.8 | -55.8 | -55.8 | -55.8 |

| STATIONARY SOURCE NOISE PREDICTION MODEL 1/31/2019                                                |                                       |                                                                                                                 |                                           |  |  |  |  |
|---------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|--|--|--|
| <b>Observer Location:</b> R2<br>Source: Playground/Park Activity<br><i>Condition:</i> Operational |                                       | Project Name: Thatcher<br>Job Number: 12185<br>Analyst: A. Wolfe                                                |                                           |  |  |  |  |
|                                                                                                   | NOISE MODEL INPUTS                    |                                                                                                                 |                                           |  |  |  |  |
| Noise Distance to Observer<br>Noise Distance to Barrier:<br>Barrier Distance to Observer:         | 157.0 feet<br>10.0 feet<br>147.0 feet | <b>Barrier Height:</b><br>Noise Source Height:<br>Observer Height:                                              | <b>40.0 feet</b><br>4.0 feet<br>5.0 feet  |  |  |  |  |
| Observer Elevation:<br>Noise Source Elevation:<br>Barrier Elevation:                              | 0.0 feet<br>0.0 feet<br>0.0 feet      | Barrier Type (0-Wall, 1-Berm):<br>Drop Off Coefficient:<br>20 = 6 dBA per doubling<br>15 = 4.5 dBA per doubling | 0<br>20.0<br>of distance<br>g of distance |  |  |  |  |

| NOISE MODEL PROJECTIONS         |                 |       |       |       |       |       |       |
|---------------------------------|-----------------|-------|-------|-------|-------|-------|-------|
| Noise Level                     | Distance (feet) | Leq   | L50   | L25   | L8    | L2    | Lmax  |
| Reference (Sample)              | 5.0             | 63.4  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| Distance Attenuation            | 157.0           | -29.9 | -29.9 | -29.9 | -29.9 | -29.9 | -29.9 |
| Shielding (Barrier Attenuation) | 10.0            | -18.8 | -18.8 | -18.8 | -18.8 | -18.8 | -18.8 |
| Raw (Distance + Barrier)        |                 | 14.7  | -48.7 | -48.7 | -48.7 | -48.7 | -48.7 |
| 60 Minute Hourly Adjustmer      | nt              | 14.7  | -48.7 | -48.7 | -48.7 | -48.7 | -48.7 |

**Observer Location:** R3

*Source:* Mechanical Ventilation Equipment *Condition:* Operational

Project Name: Thatcher Job Number: 12185 Analyst: A. Wolfe

| NOISE MODEL INPUTS            |            |                                                        |                              |  |  |  |
|-------------------------------|------------|--------------------------------------------------------|------------------------------|--|--|--|
| Noise Distance to Observer    | 145.0 feet | Barrier Height:                                        | 40.0 feet                    |  |  |  |
| Noise Distance to Barrier:    | 75.0 feet  | Noise Source Height:                                   | 5.0 feet                     |  |  |  |
| Barrier Distance to Observer: | 70.0 feet  | Observer Height:                                       | 5.0 feet                     |  |  |  |
| Observer Elevation:           | 9.0 feet   | Barrier Type (0-Wall, 1-Berm):                         | 0                            |  |  |  |
| Noise Source Elevation:       | 20.0 feet  | Drop Off Coefficient:                                  | 20.0                         |  |  |  |
| Barrier Elevation:            | 0.0 feet   | 20 = 6 dBA per doubling o<br>15 = 4.5 dBA per doubling | of distance<br>g of distance |  |  |  |

| NOISE MODEL PROJECTIONS         |                 |       |       |       |       |       |       |  |  |
|---------------------------------|-----------------|-------|-------|-------|-------|-------|-------|--|--|
| Noise Level                     | Distance (feet) | Leq   | L50   | L25   | L8    | L2    | Lmax  |  |  |
| Reference (Sample)              | 5.0             | 77.2  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |  |  |
| Distance Attenuation            | 145.0           | -29.2 | -29.2 | -29.2 | -29.2 | -29.2 | -29.2 |  |  |
| Shielding (Barrier Attenuation) | 75.0            | -15.7 | -15.7 | -15.7 | -15.7 | -15.7 | -15.7 |  |  |
| Raw (Distance + Barrier)        |                 | 32.3  | -44.9 | -44.9 | -44.9 | -44.9 | -44.9 |  |  |
| 60 Minute Hourly Adjustmer      | nt              | 32.3  | -44.9 | -44.9 | -44.9 | -44.9 | -44.9 |  |  |

| STATIONARY SOURCE NOISE PREDICTION MODEL 1/31/201                         |                        |                                                                                       |                              |  |  |  |  |  |
|---------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------------|------------------------------|--|--|--|--|--|
| <b>Observer Location: R3</b><br>Source: Trash End<br>Condition: Operation | closure Activity<br>al | <i>Project Name:</i> Thatcher<br><i>Job Number:</i> 12185<br><i>Analyst:</i> A. Wolfe |                              |  |  |  |  |  |
|                                                                           | NOISE MODEL INPUTS     |                                                                                       |                              |  |  |  |  |  |
| Noise Distance to Observer                                                | 374.0 feet             | Barrier Height:                                                                       | 40.0 feet                    |  |  |  |  |  |
| Noise Distance to Barrier:                                                | 30.0 feet              | Noise Source Height:                                                                  | 5.0 feet                     |  |  |  |  |  |
| Barrier Distance to Observer:                                             | 344.0 feet             | Observer Height:                                                                      | 5.0 feet                     |  |  |  |  |  |
| Observer Elevation:                                                       | 9.0 feet               | Barrier Type (0-Wall, 1-Berm):<br>Drop Off Coefficient:                               | 0<br>20.0                    |  |  |  |  |  |
| Barrier Elevation:                                                        | 0.0 feet               | 20 = 6 dBA per doubling<br>15 = 4.5 dBA per doubling                                  | of distance<br>g of distance |  |  |  |  |  |

| NOISE MODEL PROJECTIONS         |                 |       |       |       |       |       |       |  |  |
|---------------------------------|-----------------|-------|-------|-------|-------|-------|-------|--|--|
| Noise Level                     | Distance (feet) | Leq   | L50   | L25   | L8    | L2    | Lmax  |  |  |
| Reference (Sample)              | 5.0             | 77.3  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |  |  |
| Distance Attenuation            | 374.0           | -37.5 | -37.5 | -37.5 | -37.5 | -37.5 | -37.5 |  |  |
| Shielding (Barrier Attenuation) | 30.0            | -17.9 | -17.9 | -17.9 | -17.9 | -17.9 | -17.9 |  |  |
| Raw (Distance + Barrier)        |                 | 21.9  | -55.4 | -55.4 | -55.4 | -55.4 | -55.4 |  |  |
| 60 Minute Hourly Adjustmer      | nt              | 21.9  | -55.4 | -55.4 | -55.4 | -55.4 | -55.4 |  |  |

Observer Location: R3

Source: Pad-Mounted Transformer Condition: Operational Project Name: Thatcher Job Number: 12185 Analyst: A. Wolfe

| NOISE MODEL INPUTS            |            |                                                        |                              |  |  |  |  |  |  |
|-------------------------------|------------|--------------------------------------------------------|------------------------------|--|--|--|--|--|--|
| Noise Distance to Observer    | 357.0 feet | Barrier Height:                                        | 40.0 feet                    |  |  |  |  |  |  |
| Noise Distance to Barrier:    | 15.0 feet  | Noise Source Height:                                   | 5.0 feet                     |  |  |  |  |  |  |
| Barrier Distance to Observer: | 342.0 feet | Observer Height:                                       | 5.0 feet                     |  |  |  |  |  |  |
| Observer Elevation:           | 9.0 feet   | Barrier Type (0-Wall, 1-Berm):                         | 0                            |  |  |  |  |  |  |
| Noise Source Elevation:       | 0.0 feet   | Drop Off Coefficient:                                  | 20.0                         |  |  |  |  |  |  |
| Barrier Elevation:            | 0.0 feet   | 20 = 6 dBA per doubling o<br>15 = 4.5 dBA per doubling | of distance<br>g of distance |  |  |  |  |  |  |

| NOISE MODEL PROJECTIONS         |                 |       |       |       |       |       |       |  |  |
|---------------------------------|-----------------|-------|-------|-------|-------|-------|-------|--|--|
| Noise Level                     | Distance (feet) | Leq   | L50   | L25   | L8    | L2    | Lmax  |  |  |
| Reference (Sample)              | 6.0             | 56.0  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |  |  |
| Distance Attenuation            | 357.0           | -35.5 | -35.5 | -35.5 | -35.5 | -35.5 | -35.5 |  |  |
| Shielding (Barrier Attenuation) | 15.0            | -18.5 | -18.5 | -18.5 | -18.5 | -18.5 | -18.5 |  |  |
| Raw (Distance + Barrier)        |                 | 2.0   | -54.0 | -54.0 | -54.0 | -54.0 | -54.0 |  |  |
| 60 Minute Hourly Adjustmer      | nt              | 2.0   | -54.0 | -54.0 | -54.0 | -54.0 | -54.0 |  |  |

| STATIONARY SOURCE NOISE PREDICTION MODEL 1/31/201                                          |                                       |                                                                                                                   |                                           |  |  |  |
|--------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|--|--|
| <b>Observer Location: R3</b><br>Source: Playground/Park Activity<br>Condition: Operational |                                       | Project Name: Thatcher<br>Job Number: 12185<br>Analyst: A. Wolfe                                                  |                                           |  |  |  |
|                                                                                            | NOISE                                 | MODEL INPUTS                                                                                                      |                                           |  |  |  |
| Noise Distance to Observer<br>Noise Distance to Barrier:<br>Barrier Distance to Observer:  | 125.0 feet<br>10.0 feet<br>115.0 feet | <b>Barrier Height:</b><br>Noise Source Height:<br>Observer Height:                                                | <b>40.0 feet</b><br>4.0 feet<br>5.0 feet  |  |  |  |
| <i>Observer Elevation:<br/>Noise Source Elevation:<br/>Barrier Elevation:</i>              | 9.0 feet<br>0.0 feet<br>0.0 feet      | Barrier Type (0-Wall, 1-Berm):<br>Drop Off Coefficient:<br>20 = 6 dBA per doubling o<br>15 = 4.5 dBA per doubling | 0<br>20.0<br>of distance<br>g of distance |  |  |  |

| NOISE MODEL PROJECTIONS         |                 |       |       |       |       |       |       |  |  |
|---------------------------------|-----------------|-------|-------|-------|-------|-------|-------|--|--|
| Noise Level                     | Distance (feet) | Leq   | L50   | L25   | L8    | L2    | Lmax  |  |  |
| Reference (Sample)              | 5.0             | 63.4  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |  |  |
| Distance Attenuation            | 125.0           | -28.0 | -28.0 | -28.0 | -28.0 | -28.0 | -28.0 |  |  |
| Shielding (Barrier Attenuation) | 10.0            | -18.8 | -18.8 | -18.8 | -18.8 | -18.8 | -18.8 |  |  |
| Raw (Distance + Barrier)        |                 | 16.6  | -46.8 | -46.8 | -46.8 | -46.8 | -46.8 |  |  |
| 60 Minute Hourly Adjustmer      | nt              | 16.6  | -46.8 | -46.8 | -46.8 | -46.8 | -46.8 |  |  |

**Observer Location:** R4

*Source:* Mechanical Ventilation Equipment *Condition:* Operational

Project Name: Thatcher Job Number: 12185 Analyst: A. Wolfe

| NOISE MODEL INPUTS            |            |                                                      |                              |  |  |  |  |  |  |
|-------------------------------|------------|------------------------------------------------------|------------------------------|--|--|--|--|--|--|
| Noise Distance to Observer    | 482.0 feet | Barrier Height:                                      | 40.0 feet                    |  |  |  |  |  |  |
| Noise Distance to Barrier:    | 45.0 feet  | Noise Source Height:                                 | 5.0 feet                     |  |  |  |  |  |  |
| Barrier Distance to Observer: | 437.0 feet | Observer Height:                                     | 5.0 feet                     |  |  |  |  |  |  |
| Observer Elevation:           | 9.0 feet   | Barrier Type (0-Wall, 1-Berm):                       | 0                            |  |  |  |  |  |  |
| Noise Source Elevation:       | 20.0 feet  | Drop Off Coefficient:                                | 20.0                         |  |  |  |  |  |  |
| Barrier Elevation:            | 0.0 feet   | 20 = 6 dBA per doubling<br>15 = 4.5 dBA per doubling | of distance<br>g of distance |  |  |  |  |  |  |

| NOISE MODEL PROJECTIONS         |                 |       |       |       |       |       |       |  |  |
|---------------------------------|-----------------|-------|-------|-------|-------|-------|-------|--|--|
| Noise Level                     | Distance (feet) | Leq   | L50   | L25   | L8    | L2    | Lmax  |  |  |
| Reference (Sample)              | 5.0             | 77.2  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |  |  |
| Distance Attenuation            | 482.0           | -39.7 | -39.7 | -39.7 | -39.7 | -39.7 | -39.7 |  |  |
| Shielding (Barrier Attenuation) | 45.0            | -13.6 | -13.6 | -13.6 | -13.6 | -13.6 | -13.6 |  |  |
| Raw (Distance + Barrier)        |                 | 23.9  | -53.3 | -53.3 | -53.3 | -53.3 | -53.3 |  |  |
| 60 Minute Hourly Adjustmer      | nt              | 23.9  | -53.3 | -53.3 | -53.3 | -53.3 | -53.3 |  |  |

| STATIONARY SOURCE NOISE PREDICTION MODEL 1/31/2019                                         |                                    |                                                                                                                   |                                         |  |  |  |  |
|--------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|--|--|
| <b>Observer Location: R4</b><br>Source: Trash Enclosure Activity<br>Condition: Operational |                                    | Project Name: Thatcher<br>Job Number: 12185<br>Analyst: A. Wolfe                                                  |                                         |  |  |  |  |
| NOISE MODEL INPUTS                                                                         |                                    |                                                                                                                   |                                         |  |  |  |  |
| Noise Distance to Observer<br>Noise Distance to Barrier:<br>Barrier Distance to Observer:  | 63.0 feet<br>63.0 feet<br>0.0 feet | <b>Barrier Height:</b><br>Noise Source Height:<br>Observer Height:                                                | <b>0.0 feet</b><br>5.0 feet<br>5.0 feet |  |  |  |  |
| <i>Observer Elevation:<br/>Noise Source Elevation:<br/>Barrier Elevation:</i>              | 9.0 feet<br>0.0 feet<br>0.0 feet   | Barrier Type (0-Wall, 1-Berm):<br>Drop Off Coefficient:<br>20 = 6 dBA per doubling o<br>15 = 4.5 dBA per doubling | 0<br>20.0<br>f distance<br>of distance  |  |  |  |  |

| NOISE MODEL PROJECTIONS         |                 |       |       |       |       |       |       |  |  |
|---------------------------------|-----------------|-------|-------|-------|-------|-------|-------|--|--|
| Noise Level                     | Distance (feet) | Leq   | L50   | L25   | L8    | L2    | Lmax  |  |  |
| Reference (Sample)              | 5.0             | 77.3  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |  |  |
| Distance Attenuation            | 63.0            | -22.0 | -22.0 | -22.0 | -22.0 | -22.0 | -22.0 |  |  |
| Shielding (Barrier Attenuation) | 63.0            | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |  |  |
| Raw (Distance + Barrier)        |                 | 55.3  | -22.0 | -22.0 | -22.0 | -22.0 | -22.0 |  |  |
| 60 Minute Hourly Adjustmer      | nt              | 55.3  | -22.0 | -22.0 | -22.0 | -22.0 | -22.0 |  |  |

**Observer Location:** R4

*Source:* Pad-Mounted Transformer *Condition:* Operational

Project Name: Thatcher Job Number: 12185 Analyst: A. Wolfe

| NOISE MODEL INPUTS            |                              |                                                        |                              |  |  |  |  |  |  |
|-------------------------------|------------------------------|--------------------------------------------------------|------------------------------|--|--|--|--|--|--|
| Noise Distance to Observer    | 68.0 feet                    | Barrier Height:                                        | 0.0 feet                     |  |  |  |  |  |  |
| Noise Distance to Barrier:    | 68.0 feet                    | Noise Source Height:                                   | 5.0 feet                     |  |  |  |  |  |  |
| Barrier Distance to Observer: | 0.0 feet                     | Observer Height:                                       | 5.0 feet                     |  |  |  |  |  |  |
| Observer Elevation:           | Observer Elevation: 9.0 feet | Barrier Type (0-Wall, 1-Berm):                         | 0                            |  |  |  |  |  |  |
| Noise Source Elevation:       | 0.0 feet                     | Drop Off Coefficient:                                  | 20.0                         |  |  |  |  |  |  |
| Barrier Elevation:            | 0.0 feet                     | 20 = 6 dBA per doubling c<br>15 = 4.5 dBA per doubling | of distance<br>J of distance |  |  |  |  |  |  |

| NOISE MODEL PROJECTIONS         |                 |       |       |       |       |       |       |  |  |
|---------------------------------|-----------------|-------|-------|-------|-------|-------|-------|--|--|
| Noise Level                     | Distance (feet) | Leq   | L50   | L25   | L8    | L2    | Lmax  |  |  |
| Reference (Sample)              | 6.0             | 56.0  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |  |  |
| Distance Attenuation            | 68.0            | -21.1 | -21.1 | -21.1 | -21.1 | -21.1 | -21.1 |  |  |
| Shielding (Barrier Attenuation) | 68.0            | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |  |  |
| Raw (Distance + Barrier)        |                 | 34.9  | -21.1 | -21.1 | -21.1 | -21.1 | -21.1 |  |  |
| 60 Minute Hourly Adjustmer      | nt              | 34.9  | -21.1 | -21.1 | -21.1 | -21.1 | -21.1 |  |  |

| STATIONARY SOURCE NOISE PREDICTION MODEL 1/31/201                                          |                         |                                                                                       |                                          |  |  |  |
|--------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------|------------------------------------------|--|--|--|
| <b>Observer Location: R4</b><br>Source: Playground/Park Activity<br>Condition: Operational |                         | <i>Project Name:</i> Thatcher<br><i>Job Number:</i> 12185<br><i>Analyst:</i> A. Wolfe |                                          |  |  |  |
|                                                                                            | NO                      | ISE MODEL INPUTS                                                                      |                                          |  |  |  |
| Noise Distance to Observer<br>Noise Distance to Barrier:<br>Barrier Distance to Observer:  | 376.0 feet<br>30.0 feet | <b>Barrier Height:</b><br>Noise Source Height:<br>Observer Height:                    | <b>40.0 feet</b><br>4.0 feet<br>5.0 feet |  |  |  |
| Observer Elevation:<br>Noise Source Elevation:                                             | 9.0 feet<br>0.0 feet    | Barrier Type (0-Wall, 1-Berm):<br>Drop Off Coefficient:                               | 0<br>20.0                                |  |  |  |
| Barrier Elevation:                                                                         | 0.0 feet                | 20 = 6 dBA per doubling o<br>15 = 4.5 dBA per doubling                                | of distance<br>g of distance             |  |  |  |

| NOISE MODEL PROJECTIONS         |                 |       |       |       |       |       |       |  |  |
|---------------------------------|-----------------|-------|-------|-------|-------|-------|-------|--|--|
| Noise Level                     | Distance (feet) | Leq   | L50   | L25   | L8    | L2    | Lmax  |  |  |
| Reference (Sample)              | 5.0             | 63.4  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |  |  |
| Distance Attenuation            | 376.0           | -37.5 | -37.5 | -37.5 | -37.5 | -37.5 | -37.5 |  |  |
| Shielding (Barrier Attenuation) | 30.0            | -18.0 | -18.0 | -18.0 | -18.0 | -18.0 | -18.0 |  |  |
| Raw (Distance + Barrier)        |                 | 7.9   | -55.5 | -55.5 | -55.5 | -55.5 | -55.5 |  |  |
| 60 Minute Hourly Adjustmer      | nt              | 7.9   | -55.5 | -55.5 | -55.5 | -55.5 | -55.5 |  |  |

#### **Observer Location:** R5

*Source:* Mechanical Ventilation Equipment *Condition:* Operational

Project Name: Thatcher Job Number: 12185 Analyst: A. Wolfe

| NOISE MODEL INPUTS            |            |                                                        |                              |  |  |  |  |  |
|-------------------------------|------------|--------------------------------------------------------|------------------------------|--|--|--|--|--|
| Noise Distance to Observer    | 455.0 feet | Barrier Height:                                        | 6.0 feet                     |  |  |  |  |  |
| Noise Distance to Barrier:    | 406.0 feet | Noise Source Height:                                   | 5.0 feet                     |  |  |  |  |  |
| Barrier Distance to Observer: | 49.0 feet  | Observer Height:                                       | 5.0 feet                     |  |  |  |  |  |
| Observer Elevation:           | 0.0 feet   | Barrier Type (0-Wall, 1-Berm):                         | 0                            |  |  |  |  |  |
| Noise Source Elevation:       | 20.0 feet  | Drop Off Coefficient:                                  | 20.0                         |  |  |  |  |  |
| Barrier Elevation:            | 0.0 feet   | 20 = 6 dBA per doubling o<br>15 = 4.5 dBA per doubling | of distance<br>g of distance |  |  |  |  |  |

| NOISE MODEL PROJECTIONS         |                 |       |       |       |       |       |       |  |  |
|---------------------------------|-----------------|-------|-------|-------|-------|-------|-------|--|--|
| Noise Level                     | Distance (feet) | Leq   | L50   | L25   | L8    | L2    | Lmax  |  |  |
| Reference (Sample)              | 5.0             | 77.2  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |  |  |
| Distance Attenuation            | 455.0           | -39.2 | -39.2 | -39.2 | -39.2 | -39.2 | -39.2 |  |  |
| Shielding (Barrier Attenuation) | 406.0           | -5.1  | -5.1  | -5.1  | -5.1  | -5.1  | -5.1  |  |  |
| Raw (Distance + Barrier)        |                 | 32.9  | -44.3 | -44.3 | -44.3 | -44.3 | -44.3 |  |  |
| 60 Minute Hourly Adjustmer      | nt              | 32.9  | -44.3 | -44.3 | -44.3 | -44.3 | -44.3 |  |  |

| STATIONARY SOURCE NOISE PREDICTION MODEL 1/31/20                                          |                                     |                                                                                                                   |                                         |  |  |  |
|-------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|--|
| <b>Observer Location: R5</b><br>Source: Trash Enc<br>Condition: Operationa                | losure Activity<br>al               | Project Name: Thatcher<br>Job Number: 12185<br>Analyst: A. Wolfe                                                  |                                         |  |  |  |
|                                                                                           | NOIS                                | E MODEL INPUTS                                                                                                    |                                         |  |  |  |
| Noise Distance to Observer<br>Noise Distance to Barrier:<br>Barrier Distance to Observer: | 75.0 feet<br>35.0 feet<br>40.0 feet | <b>Barrier Height:</b><br>Noise Source Height:<br>Observer Height:                                                | 6.0 feet<br>5.0 feet<br>5.0 feet        |  |  |  |
| Observer Elevation:<br>Noise Source Elevation:<br>Barrier Elevation:                      | 0.0 feet<br>0.0 feet<br>0.0 feet    | Barrier Type (0-Wall, 1-Berm):<br>Drop Off Coefficient:<br>20 = 6 dBA per doubling o<br>15 = 4.5 dBA per doubling | 0<br>20.0<br>of distance<br>of distance |  |  |  |

| NOISE MODEL PROJECTIONS         |                 |       |       |       |       |       |       |  |  |
|---------------------------------|-----------------|-------|-------|-------|-------|-------|-------|--|--|
| Noise Level                     | Distance (feet) | Leq   | L50   | L25   | L8    | L2    | Lmax  |  |  |
| Reference (Sample)              | 5.0             | 77.3  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |  |  |
| Distance Attenuation            | 75.0            | -23.5 | -23.5 | -23.5 | -23.5 | -23.5 | -23.5 |  |  |
| Shielding (Barrier Attenuation) | 35.0            | -5.3  | -5.3  | -5.3  | -5.3  | -5.3  | -5.3  |  |  |
| Raw (Distance + Barrier)        |                 | 48.5  | -28.8 | -28.8 | -28.8 | -28.8 | -28.8 |  |  |
| 60 Minute Hourly Adjustmer      | nt              | 48.5  | -28.8 | -28.8 | -28.8 | -28.8 | -28.8 |  |  |

**Observer Location:** R5

*Source:* Pad-Mounted Transformer *Condition:* Operational

Project Name: Thatcher Job Number: 12185 Analyst: A. Wolfe

| NOISE MODEL INPUTS            |                              |                                                        |                            |  |  |  |  |  |
|-------------------------------|------------------------------|--------------------------------------------------------|----------------------------|--|--|--|--|--|
| Noise Distance to Observer    | 77.0 feet                    | Barrier Height:                                        | 6.0 feet                   |  |  |  |  |  |
| Noise Distance to Barrier:    | 43.0 feet                    | Noise Source Height:                                   | 5.0 feet                   |  |  |  |  |  |
| Barrier Distance to Observer: | 34.0 feet                    | Observer Height:                                       | 5.0 feet                   |  |  |  |  |  |
| Observer Elevation:           | Observer Elevation: 0.0 feet | Barrier Type (0-Wall, 1-Berm):                         | 0                          |  |  |  |  |  |
| Noise Source Elevation:       | 0.0 feet                     | Drop Off Coefficient:                                  | 20.0                       |  |  |  |  |  |
| Barrier Elevation:            | 0.0 feet                     | 20 = 6 dBA per doubling o<br>15 = 4.5 dBA per doubling | of distance<br>of distance |  |  |  |  |  |

| NOISE MODEL PROJECTIONS         |                 |       |       |       |       |       |       |  |  |
|---------------------------------|-----------------|-------|-------|-------|-------|-------|-------|--|--|
| Noise Level                     | Distance (feet) | Leq   | L50   | L25   | L8    | L2    | Lmax  |  |  |
| Reference (Sample)              | 6.0             | 56.0  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |  |  |
| Distance Attenuation            | 77.0            | -22.2 | -22.2 | -22.2 | -22.2 | -22.2 | -22.2 |  |  |
| Shielding (Barrier Attenuation) | 43.0            | -5.3  | -5.3  | -5.3  | -5.3  | -5.3  | -5.3  |  |  |
| Raw (Distance + Barrier)        |                 | 28.5  | -27.5 | -27.5 | -27.5 | -27.5 | -27.5 |  |  |
| 60 Minute Hourly Adjustmer      | nt              | 28.5  | -27.5 | -27.5 | -27.5 | -27.5 | -27.5 |  |  |

| STATIONARY SOURCE NOISE PREDICTION MODEL 1/31/20                                          |                                       |                                                                                                                   |                                         |  |  |  |
|-------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|--|
| <b>Observer Location: R5</b><br>Source: Playgrour<br>Condition: Operation                 | d/Park Activity<br>al                 | Project Name: Thatcher<br>Job Number: 12185<br>Analyst: A. Wolfe                                                  |                                         |  |  |  |
|                                                                                           | NOIS                                  | SE MODEL INPUTS                                                                                                   |                                         |  |  |  |
| Noise Distance to Observer<br>Noise Distance to Barrier:<br>Barrier Distance to Observer: | 339.0 feet<br>288.0 feet<br>51.0 feet | <b>Barrier Height:</b><br>Noise Source Height:<br>Observer Height:                                                | 6.0 feet<br>4.0 feet<br>5.0 feet        |  |  |  |
| <i>Observer Elevation:<br/>Noise Source Elevation:<br/>Barrier Elevation:</i>             | 0.0 feet<br>0.0 feet<br>0.0 feet      | Barrier Type (0-Wall, 1-Berm):<br>Drop Off Coefficient:<br>20 = 6 dBA per doubling o<br>15 = 4.5 dBA per doubling | 0<br>20.0<br>of distance<br>of distance |  |  |  |

| NOISE MODEL PROJECTIONS         |                 |       |       |       |       |       |       |  |  |
|---------------------------------|-----------------|-------|-------|-------|-------|-------|-------|--|--|
| Noise Level                     | Distance (feet) | Leq   | L50   | L25   | L8    | L2    | Lmax  |  |  |
| Reference (Sample)              | 5.0             | 63.4  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |  |  |
| Distance Attenuation            | 339.0           | -36.6 | -36.6 | -36.6 | -36.6 | -36.6 | -36.6 |  |  |
| Shielding (Barrier Attenuation) | 288.0           | -5.1  | -5.1  | -5.1  | -5.1  | -5.1  | -5.1  |  |  |
| Raw (Distance + Barrier)        |                 | 21.7  | -41.7 | -41.7 | -41.7 | -41.7 | -41.7 |  |  |
| 60 Minute Hourly Adjustmer      | nt              | 21.7  | -41.7 | -41.7 | -41.7 | -41.7 | -41.7 |  |  |

#### **Observer Location:** R6

*Source:* Mechanical Ventilation Equipment *Condition:* Operational

Project Name: Thatcher Job Number: 12185 Analyst: A. Wolfe

| NOISE MODEL INPUTS            |            |                                                      |                              |  |  |  |  |  |
|-------------------------------|------------|------------------------------------------------------|------------------------------|--|--|--|--|--|
| Noise Distance to Observer    | 251.0 feet | Barrier Height:                                      | 25.0 feet                    |  |  |  |  |  |
| Noise Distance to Barrier:    | 100.0 feet | Noise Source Height:                                 | 5.0 feet                     |  |  |  |  |  |
| Barrier Distance to Observer: | 151.0 feet | Observer Height:                                     | 5.0 feet                     |  |  |  |  |  |
| Observer Elevation:           | 0.0 feet   | Barrier Type (0-Wall, 1-Berm):                       | 0                            |  |  |  |  |  |
| Noise Source Elevation:       | 20.0 feet  | Drop Off Coefficient:                                | 20.0                         |  |  |  |  |  |
| Barrier Elevation:            | 0.0 feet   | 20 = 6 dBA per doubling<br>15 = 4.5 dBA per doubling | of distance<br>g of distance |  |  |  |  |  |

| NOISE MODEL PROJECTIONS         |                 |       |       |       |       |       |       |  |  |
|---------------------------------|-----------------|-------|-------|-------|-------|-------|-------|--|--|
| Noise Level                     | Distance (feet) | Leq   | L50   | L25   | L8    | L2    | Lmax  |  |  |
| Reference (Sample)              | 5.0             | 77.2  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |  |  |
| Distance Attenuation            | 251.0           | -34.0 | -34.0 | -34.0 | -34.0 | -34.0 | -34.0 |  |  |
| Shielding (Barrier Attenuation) | 100.0           | -8.5  | -8.5  | -8.5  | -8.5  | -8.5  | -8.5  |  |  |
| Raw (Distance + Barrier)        |                 | 34.7  | -42.5 | -42.5 | -42.5 | -42.5 | -42.5 |  |  |
| 60 Minute Hourly Adjustme       | nt              | 34.7  | -42.5 | -42.5 | -42.5 | -42.5 | -42.5 |  |  |

| STATIONARY SOURCE NOISE PREDICTION MODEL 1/31/20                                          |                                       |                                                                                                                 |                                           |  |  |  |
|-------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|--|--|
| <b>Observer Location: R6</b><br>Source: Trash End<br>Condition: Operation                 | closure Activity<br>al                | <i>Project Name:</i> Thatcher<br><i>Job Number:</i> 12185<br><i>Analyst:</i> A. Wolfe                           |                                           |  |  |  |
|                                                                                           | NO                                    | SE MODEL INPUTS                                                                                                 |                                           |  |  |  |
| Noise Distance to Observer<br>Noise Distance to Barrier:<br>Barrier Distance to Observer: | 284.0 feet<br>35.0 feet<br>249.0 feet | <b>Barrier Height:</b><br>Noise Source Height:<br>Observer Height:                                              | <b>25.0 feet</b><br>5.0 feet<br>5.0 feet  |  |  |  |
| <i>Observer Elevation:<br/>Noise Source Elevation:<br/>Barrier Elevation:</i>             | 0.0 feet<br>0.0 feet<br>0.0 feet      | Barrier Type (0-Wall, 1-Berm):<br>Drop Off Coefficient:<br>20 = 6 dBA per doubling<br>15 = 4.5 dBA per doubling | 0<br>20.0<br>of distance<br>g of distance |  |  |  |

| NOISE MODEL PROJECTIONS         |                 |       |       |       |       |       |       |  |  |
|---------------------------------|-----------------|-------|-------|-------|-------|-------|-------|--|--|
| Noise Level                     | Distance (feet) | Leq   | L50   | L25   | L8    | L2    | Lmax  |  |  |
| Reference (Sample)              | 5.0             | 77.3  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |  |  |
| Distance Attenuation            | 284.0           | -35.1 | -35.1 | -35.1 | -35.1 | -35.1 | -35.1 |  |  |
| Shielding (Barrier Attenuation) | 35.0            | -15.9 | -15.9 | -15.9 | -15.9 | -15.9 | -15.9 |  |  |
| Raw (Distance + Barrier)        |                 | 26.3  | -51.0 | -51.0 | -51.0 | -51.0 | -51.0 |  |  |
| 60 Minute Hourly Adjustmer      | nt              | 26.3  | -51.0 | -51.0 | -51.0 | -51.0 | -51.0 |  |  |

**Observer Location:** R6

*Source:* Pad-Mounted Transformer *Condition:* Operational

Project Name: Thatcher Job Number: 12185 Analyst: A. Wolfe

| NOISE MODEL INPUTS            |            |                                                      |                              |  |  |  |  |  |
|-------------------------------|------------|------------------------------------------------------|------------------------------|--|--|--|--|--|
| Noise Distance to Observer    | 271.0 feet | Barrier Height:                                      | 25.0 feet                    |  |  |  |  |  |
| Noise Distance to Barrier:    | 15.0 feet  | Noise Source Height:                                 | 5.0 feet                     |  |  |  |  |  |
| Barrier Distance to Observer: | 256.0 feet | Observer Height:                                     | 5.0 feet                     |  |  |  |  |  |
| Observer Elevation:           | 0.0 feet   | Barrier Type (0-Wall, 1-Berm):                       | 0                            |  |  |  |  |  |
| Noise Source Elevation:       | 0.0 feet   | Drop Off Coefficient:                                | 20.0                         |  |  |  |  |  |
| Barrier Elevation:            | 0.0 feet   | 20 = 6 dBA per doubling<br>15 = 4.5 dBA per doubling | of distance<br>g of distance |  |  |  |  |  |

| NOISE MODEL PROJECTIONS         |                 |       |       |       |       |       |       |  |  |
|---------------------------------|-----------------|-------|-------|-------|-------|-------|-------|--|--|
| Noise Level                     | Distance (feet) | Leq   | L50   | L25   | L8    | L2    | Lmax  |  |  |
| Reference (Sample)              | 6.0             | 56.0  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |  |  |
| Distance Attenuation            | 271.0           | -33.1 | -33.1 | -33.1 | -33.1 | -33.1 | -33.1 |  |  |
| Shielding (Barrier Attenuation) | 15.0            | -17.2 | -17.2 | -17.2 | -17.2 | -17.2 | -17.2 |  |  |
| Raw (Distance + Barrier)        |                 | 5.7   | -50.3 | -50.3 | -50.3 | -50.3 | -50.3 |  |  |
| 60 Minute Hourly Adjustmer      | nt              | 5.7   | -50.3 | -50.3 | -50.3 | -50.3 | -50.3 |  |  |

| STATIONARY SOURCE NOISE PREDICTION MODEL 1/31/2019                                         |                                       |                                                                                                                    |                                          |  |  |  |  |
|--------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------|--|--|--|--|
| <b>Observer Location: R6</b><br>Source: Playground/Park Activity<br>Condition: Operational |                                       | Project Name: Thatcher<br>Job Number: 12185<br>Analyst: A. Wolfe                                                   |                                          |  |  |  |  |
|                                                                                            | NO                                    | ISE MODEL INPUTS                                                                                                   |                                          |  |  |  |  |
| Noise Distance to Observer<br>Noise Distance to Barrier:<br>Barrier Distance to Observer:  | 139.0 feet<br>20.0 feet<br>119.0 feet | <b>Barrier Height:</b><br>Noise Source Height:<br>Observer Height:                                                 | <b>25.0 feet</b><br>4.0 feet<br>5.0 feet |  |  |  |  |
| <i>Observer Elevation:<br/>Noise Source Elevation:<br/>Barrier Elevation:</i>              | 0.0 feet<br>0.0 feet<br>0.0 feet      | Barrier Type (0-Wall, 1-Berm):<br>Drop Off Coefficient:<br>20 = 6 dBA per doubling of<br>15 = 4.5 dBA per doubling | 0<br>20.0<br>f distance<br>of distance   |  |  |  |  |

| NOISE MODEL PROJECTIONS         |                 |       |       |       |       |       |       |  |  |
|---------------------------------|-----------------|-------|-------|-------|-------|-------|-------|--|--|
| Noise Level                     | Distance (feet) | Leq   | L50   | L25   | L8    | L2    | Lmax  |  |  |
| Reference (Sample)              | 5.0             | 63.4  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |  |  |
| Distance Attenuation            | 139.0           | -28.9 | -28.9 | -28.9 | -28.9 | -28.9 | -28.9 |  |  |
| Shielding (Barrier Attenuation) | 20.0            | -17.2 | -17.2 | -17.2 | -17.2 | -17.2 | -17.2 |  |  |
| Raw (Distance + Barrier)        |                 | 17.3  | -46.1 | -46.1 | -46.1 | -46.1 | -46.1 |  |  |
| 60 Minute Hourly Adjustmer      | nt              | 17.3  | -46.1 | -46.1 | -46.1 | -46.1 | -46.1 |  |  |

**Observer Location:** R7

*Source:* Mechanical Ventilation Equipment *Condition:* Operational

Project Name: Thatcher Job Number: 12185 Analyst: A. Wolfe

| NOISE MODEL INPUTS            |            |                                                      |                              |  |  |  |  |  |  |
|-------------------------------|------------|------------------------------------------------------|------------------------------|--|--|--|--|--|--|
| Noise Distance to Observer    | 184.0 feet | Barrier Height:                                      | 25.0 feet                    |  |  |  |  |  |  |
| Noise Distance to Barrier:    | 60.0 feet  | Noise Source Height:                                 | 5.0 feet                     |  |  |  |  |  |  |
| Barrier Distance to Observer: | 124.0 feet | Observer Height:                                     | 5.0 feet                     |  |  |  |  |  |  |
| Observer Elevation:           | 0.0 feet   | Barrier Type (0-Wall, 1-Berm):                       | 0                            |  |  |  |  |  |  |
| Noise Source Elevation:       | 20.0 feet  | Drop Off Coefficient:                                | 20.0                         |  |  |  |  |  |  |
| Barrier Elevation:            | 0.0 feet   | 20 = 6 dBA per doubling<br>15 = 4.5 dBA per doubling | of distance<br>g of distance |  |  |  |  |  |  |

| NOISE MODEL PROJECTIONS         |                 |       |       |       |       |       |       |  |  |
|---------------------------------|-----------------|-------|-------|-------|-------|-------|-------|--|--|
| Noise Level                     | Distance (feet) | Leq   | L50   | L25   | L8    | L2    | Lmax  |  |  |
| Reference (Sample)              | 5.0             | 77.2  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |  |  |
| Distance Attenuation            | 184.0           | -31.3 | -31.3 | -31.3 | -31.3 | -31.3 | -31.3 |  |  |
| Shielding (Barrier Attenuation) | 60.0            | -8.5  | -8.5  | -8.5  | -8.5  | -8.5  | -8.5  |  |  |
| Raw (Distance + Barrier)        |                 | 37.4  | -39.8 | -39.8 | -39.8 | -39.8 | -39.8 |  |  |
| 60 Minute Hourly Adjustmer      | nt              | 37.4  | -39.8 | -39.8 | -39.8 | -39.8 | -39.8 |  |  |

| STATIONARY SOURCE NOISE PREDICTION MODEL 1/31/2                                           |                                       |                                                                                                                    |                                           |  |  |  |
|-------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|--|--|
| <b>Observer Location: R7</b><br>Source: Trash End<br>Condition: Operation                 | closure Activity<br>al                | Project Name: Thatcher<br>Job Number: 12185<br>Analyst: A. Wolfe                                                   |                                           |  |  |  |
|                                                                                           | NOISE I                               | MODEL INPUTS                                                                                                       |                                           |  |  |  |
| Noise Distance to Observer<br>Noise Distance to Barrier:<br>Barrier Distance to Observer: | 482.0 feet<br>35.0 feet<br>447.0 feet | <i>Barrier Height:</i><br>Noise Source Height:<br>Observer Height:                                                 | <b>25.0 feet</b><br>5.0 feet<br>5.0 feet  |  |  |  |
| <i>Observer Elevation:<br/>Noise Source Elevation:<br/>Barrier Elevation:</i>             | 0.0 feet<br>0.0 feet<br>0.0 feet      | Barrier Type (0-Wall, 1-Berm):<br>Drop Off Coefficient:<br>20 = 6 dBA per doubling of<br>15 = 4.5 dBA per doubling | 0<br>20.0<br>of distance<br>g of distance |  |  |  |

| NOISE MODEL PROJECTIONS         |                 |       |       |       |       |       |       |  |  |
|---------------------------------|-----------------|-------|-------|-------|-------|-------|-------|--|--|
| Noise Level                     | Distance (feet) | Leq   | L50   | L25   | L8    | L2    | Lmax  |  |  |
| Reference (Sample)              | 5.0             | 77.3  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |  |  |
| Distance Attenuation            | 482.0           | -39.7 | -39.7 | -39.7 | -39.7 | -39.7 | -39.7 |  |  |
| Shielding (Barrier Attenuation) | 35.0            | -15.7 | -15.7 | -15.7 | -15.7 | -15.7 | -15.7 |  |  |
| Raw (Distance + Barrier)        |                 | 21.9  | -55.4 | -55.4 | -55.4 | -55.4 | -55.4 |  |  |
| 60 Minute Hourly Adjustmer      | nt              | 21.9  | -55.4 | -55.4 | -55.4 | -55.4 | -55.4 |  |  |

1/31/2019

Observer Location: R7 Source: Pad-Mounted Transformer Condition: Operational Project Name: Thatcher Job Number: 12185 Analyst: A. Wolfe

| NOISE MODEL INPUTS            |            |                                                        |                              |  |  |  |  |  |  |
|-------------------------------|------------|--------------------------------------------------------|------------------------------|--|--|--|--|--|--|
| Noise Distance to Observer    | 467.0 feet | Barrier Height:                                        | 25.0 feet                    |  |  |  |  |  |  |
| Noise Distance to Barrier:    | 15.0 feet  | Noise Source Height:                                   | 5.0 feet                     |  |  |  |  |  |  |
| Barrier Distance to Observer: | 452.0 feet | Observer Height:                                       | 5.0 feet                     |  |  |  |  |  |  |
| Observer Elevation:           | 0.0 feet   | Barrier Type (0-Wall, 1-Berm):                         | 0                            |  |  |  |  |  |  |
| Noise Source Elevation:       | 0.0 feet   | Drop Off Coefficient:                                  | 20.0                         |  |  |  |  |  |  |
| Barrier Elevation:            | 0.0 feet   | 20 = 6 dBA per doubling o<br>15 = 4.5 dBA per doubling | of distance<br>g of distance |  |  |  |  |  |  |

| NOISE MODEL PROJECTIONS         |                 |       |       |       |       |       |       |  |  |
|---------------------------------|-----------------|-------|-------|-------|-------|-------|-------|--|--|
| Noise Level                     | Distance (feet) | Leq   | L50   | L25   | L8    | L2    | Lmax  |  |  |
| Reference (Sample)              | 6.0             | 56.0  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |  |  |
| Distance Attenuation            | 467.0           | -37.8 | -37.8 | -37.8 | -37.8 | -37.8 | -37.8 |  |  |
| Shielding (Barrier Attenuation) | 15.0            | -17.1 | -17.1 | -17.1 | -17.1 | -17.1 | -17.1 |  |  |
| Raw (Distance + Barrier)        |                 | 1.1   | -54.9 | -54.9 | -54.9 | -54.9 | -54.9 |  |  |
| 60 Minute Hourly Adjustmer      | nt              | 1.1   | -54.9 | -54.9 | -54.9 | -54.9 | -54.9 |  |  |

| STATIONARY SOURCE NOISE PREDICTION MODEL 1/31/2019                                         |                                       |                                                                                                                 |                                           |  |  |  |  |
|--------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|--|--|--|
| <b>Observer Location: R7</b><br>Source: Playground/Park Activity<br>Condition: Operational |                                       | Project Name: Thatcher<br>Job Number: 12185<br>Analyst: A. Wolfe                                                |                                           |  |  |  |  |
| NOISE MODEL INPUTS                                                                         |                                       |                                                                                                                 |                                           |  |  |  |  |
| Noise Distance to Observer<br>Noise Distance to Barrier:<br>Barrier Distance to Observer:  | 150.0 feet<br>10.0 feet<br>140.0 feet | <i>Barrier Height:</i><br>Noise Source Height:<br>Observer Height:                                              | <b>25.0 feet</b><br>4.0 feet<br>5.0 feet  |  |  |  |  |
| Observer Elevation:<br>Noise Source Elevation:<br>Barrier Elevation:                       | 0.0 feet<br>0.0 feet<br>0.0 feet      | Barrier Type (0-Wall, 1-Berm):<br>Drop Off Coefficient:<br>20 = 6 dBA per doubling<br>15 = 4.5 dBA per doubling | 0<br>20.0<br>of distance<br>g of distance |  |  |  |  |

| NOISE MODEL PROJECTIONS         |                 |       |       |       |       |       |       |  |  |
|---------------------------------|-----------------|-------|-------|-------|-------|-------|-------|--|--|
| Noise Level                     | Distance (feet) | Leq   | L50   | L25   | L8    | L2    | Lmax  |  |  |
| Reference (Sample)              | 5.0             | 63.4  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |  |  |
| Distance Attenuation            | 150.0           | -29.5 | -29.5 | -29.5 | -29.5 | -29.5 | -29.5 |  |  |
| Shielding (Barrier Attenuation) | 10.0            | -17.6 | -17.6 | -17.6 | -17.6 | -17.6 | -17.6 |  |  |
| Raw (Distance + Barrier)        |                 | 16.3  | -47.1 | -47.1 | -47.1 | -47.1 | -47.1 |  |  |
| 60 Minute Hourly Adjustmer      | nt              | 16.3  | -47.1 | -47.1 | -47.1 | -47.1 | -47.1 |  |  |